
MarkLogic Server Endpoints and Request Monitoring
8.0 Endpoints and Request Monitoring
80

The Request Monitoring feature enables you to configure logging of information related to
requests, including metrics collected during request execution. This feature lets you enable
logging of internal preset metrics for requests on specific endpoints. You can also log custom
request data by calling the provided Request Logging APIs. This logged information may help
you evaluate server performance.

This chapter provides an overview of creating endpoint declarations and using them to monitor
requests on MarkLogic Server. This chapter includes the following sections:

• Monitoring Requests

• App Server Request Monitoring

• XDBC Server Request Monitoring

• Task Server Monitoring

• Creating Endpoint Declarations

• Request Cancelling

• Request Monitoring APIs

8.1 Monitoring Requests

Using the Request Monitoring feature, you can switch on logging of internal preset metrics for
requests on specific endpoints, or you can choose to log additional custom request data by calling
the request logging APIs. The custom request data might contain a query plan, traces, or whatever
information you want to collect and log for a request. This logged information may help you spot
offending requests and evaluate request history.

8.2 App Server Request Monitoring

You can trigger request logging for an App Server through one or more of the following options:

• For targeted endpoints (main modules), by switching on monitoring in their endpoint
declaration.

• For all requests on the App Server, by using a special server declaration.

• By calling request logging APIs in modules.

To switch on monitoring for an endpoint, you must add a monitoring section to the App Server
Endpoint Declaration file and specify which metrics will be logged. Request monitoring is
switched off by default for all metrics.
MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 65

MarkLogic Server Endpoints and Request Monitoring
8.3 XDBC Server Request Monitoring

XDBC Server enables XCC and XDBC applications to communicate with MarkLogic Server.
You can configure request monitoring for XDBC requests for specific endpoints and globally for
the XDBC Server. There are two types of XDBC requests where request monitoring are enabled:

• XDBC Invoke Requests

• XDBC Eval Requests

8.3.1 XDBC Invoke Requests

You can enable request monitoring at both the endpoint level and at the server level for XDBC
invoke request. For a specific endpoint, you must add a monitoring section to the XDBC Server
Endpoint Declaration file and specify which metrics will be logged. To configure monitoring on a
global level, you must add a default.api file in the modules root directory for the XDBC Server.
For the Task Server, as there is no port number, the output request log file will be logged into a
new type of log file called TaskServer_RequestLog.txt

8.3.2 XDBC Eval Requests

For XDBC eval requests, request monitoring is only available at the server level, as there are no
real endpoints. To seperate the monitoring configuration between the invoke and eval request, and
to add more control over the monitoring of the eval request, you can add an eval.api file to the
module root in addition to the default.api file. The eval.api file has the same format as the
default.api file, which contains only a monitoring section, but the settings in eval.api override
those in default.api.

8.4 Task Server Monitoring

The Task Server processes request that has been spawned, such as from xdmp:spawn() or from a
post-commit trigger action. Since each task is handled as a module, you can configure request
monitoring for both endpoint level and server level. To configure request monitoring for a
specific endpoint, add a monitoring section to the Task Server Endpoint Declaration file (*.api)
and specify which metrics are to be logged. For monitoring on a global level, add a monitoring
section to the default.api file in the modules root directory for the Task Server. The
configuration in a specific endpoint declaration file overrides the settings in the global
default.api.

8.5 Creating Endpoint Declarations

An Endpoint Declaration is a JSON file with the extension .api that resides in the module
database or file directory of an HTTP server. The App Server uses the declarations in this file to
dispatch requests to corresponding main modules. The declarations in this file also determine
which requests are to be logged.
MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 66

MarkLogic Server Endpoints and Request Monitoring
8.5.1 The Endpoint Declaration File

The name, parameters, and return value for each endpoint are declared in the *.api file. The *.api
file contains a JSON data structure with the following properties:

Note: When monitoring a module that is not defined as an endpoint, none of the
properties defined in the preceding table are needed

The following is a list of meters that can be logged with the parameters that control them:

Property Declares

functionName The name used to call the endpoint, which must match the name (without the
.api extension) of the declaration file.

desc Optional; plain text documentation for the endpoint.

params Optional; an array specifying the parameters of the endpoint. This is omitted
for endpoints with no parameters. Parameter objects have name, desc,
datatype, nullable, and multiple properties.

return Optional; an object specifying the endpoint return value. This is omitted for
endpoints with no return value. The child object has desc, datatype, nullable,
and multiple properties.

errorDetail Optional; specifies a value from the following enumeration to control whether
error responses include stack traces:

• log (the default): log the stack trace on the server but do not return the
stack trace to the middle tier.

• return: include the stack trace in the exception on the middle tier as
well as log it on the server.

Monitoring
Flag

Data
Type

Default
Value

Parameters

general object Enables all the general (non-custom) meters. The list
of parameters on which you can set constraints is in
the next table.

enabled boolean false Controls the logging of meters.

custom boolean true Custom meters manipulated with the
xdmp:request-log-* APIs.
MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 67

MarkLogic Server Endpoints and Request Monitoring
The following parameters may be included in a *.api file:

fragments integer 0 The maximum number of items to log. For each
fragment: root, expandedTreeCacheHits,
expandedTreeCacheMisses

documents integer 0 The maximum number of items to log. For each
document: uri, expandedTreeCacheHits,
expandedTreeCacheMisses

hosts integer 0 The maximum number of items to log. For each host:
host, roundTripTime, roundTripCount

Parameter Description

commitTime The aggregate commit phase time, represented as a
double-precision value in seconds.

compileTime The aggregate time spent compiling a module or a
program, represented as a double-precision value in
seconds.

compressedTreeSize The aggregate size in bytes read from disk by
unsuccessful compressed tree cache lookups. Each
unsuccessful compressed tree cache lookup is followed
by a disk access to load the compressed tree into the
cache.

compressedTreeCacheHits The number of successful compressed tree cache
lookups. The compressed tree cache holds XML
document data in the compressed representation stored
on disk.

compressedTreeCacheMisses The number of unsuccessful compressed tree cache
lookups. Each unsuccessful compressed tree cache
lookup was followed by a disk access to load the
compressed tree into the cache.

contemporaneousTimestampTime The time spent by queries waiting for the
contemporaneous timestamp for which any transaction is
known to have committed, represented as a
double-precision value in seconds. When the
multi-version concurrency control is set
contemporaneous, queries can block waiting for the
contemporaneous transactions to fully commit.

Monitoring
Flag

Data
Type

Default
Value

Parameters
MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 68

MarkLogic Server Endpoints and Request Monitoring
dbLibraryModuleCacheHits The number of library module cache hits from library
modules from the modules database.

dbLibraryModuleCacheMisses The number of library module cache misses from library
modules from the modules database.

dbMainModuleSequenceCacheHits The number of main module cache hits from main
modules in a database.

dbMainModuleSequenceCacheMisses The number of main module cache misses from main
modules in a database.

dbProgramCacheHits The number of module cache hits from the entire
program made from modules in a database (may contain
library modules from the special Modules directory).

dbProgramCacheMisses The number of module cache misses from the entire
program made from modules in a database (may contain
library modules from the special Modules directory).

elapsedTime The time elapsed since the start of the processing of this
query, in the form of a duration. Use this parameter
instead of the deprecated xdmp:set-request-time-limit
function.

envProgramCacheHits The number of module cache hits from the entire
program made from ad hoc XSLT stylesheet nodes.

envProgramCacheMisses The number of module cache misses from the entire
program made from ad hoc XSLT stylesheet nodes.

expandedTreeCacheHits The number of successful expanded tree cache lookups.
The expanded tree cache cache holds XML document
data in the expanded representation used by the XQuery
evaluator.

expandedTreeCacheMisses The number of unsuccessful expanded tree cache
lookups. Each unsuccessful expanded tree lookup was
followed by a compressed tree cache lookup to load the
expanded tree into the cache.

filterHits The number of successful search filter matches.

filterMisses The number of unsuccessful search filter matches.

fragmentsAdded The number of XML fragments added to the database by
an update.

Parameter Description
MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 69

MarkLogic Server Endpoints and Request Monitoring
fragmentsDeleted The number of XML fragments deleted from the
database by an update.

fsLibraryModuleCacheHits The number of library module cache hits from library
modules on the file system.

fsLibraryModuleCacheMisses The number of library module cache misses from library
modules on the file system.

fsMainModuleSequenceCacheHits The number of main module cache hits from main
modules on the file system.

fsMainModuleSequenceCacheMisses The number of main module cache misses from main
modules on the file system.

fsProgramCacheHits The number of module cache hits from the entire
program made from modules on the file system.

fsProgramCacheMisses The number of module cache misses from the entire
program made from modules on the file system.

inMemoryCompressedTreeHits The number of successful compressed tree lookups in
in-memory stands.

inMemoryListHits The number of successful list lookups in in-memory
stands.

indexingTime The indexing time of documents before they are inserted
into the database, represented as a double-precision value
in seconds.

linkCacheHits The number of successful link cache lookups. The link
cache is a transient cache that exists only for the duration
of one query. It holds pointers to expanded trees, and is
used to accelerate the frequent dereferencing of link
nodes.

linkCacheMisses The number of unsuccessful link cache lookups. Each
unsuccessful link cache lookup was followed by a search
for the link target tree.

listSize The aggregate size in bytes read from disk by
unsuccessful list cache lookups. Each unsuccessful list
cache lookup is followed by a disk access to load the
search term list into the cache.

Parameter Description
MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 70

MarkLogic Server Endpoints and Request Monitoring
listCacheHits The number of successful list cache lookups. The list
cache holds search termlists used to accelerate path
expressions and text searches.

listCacheMisses The number of unsuccessful list cache lookups. Each
unsuccessful list cache lookup was followed by a disk
access to load the search termlist into the cache.

lockTime The aggregate time forests spend waiting for
transactional read and write locks, represented as a
double-precision value in seconds. This time can exceed
the run-time.

readLocks The number of read locks.

regexpCacheHits The number of successful regular expression cache
lookups. The regular expression cache is a transient
cache that exists only for the duration of one query. It
holds compiled regular expressions, and is used to
accelerate the frequent use of regular expressions during
the evaluation of a query.

regexpCacheMisses The number of unsuccessful regular expression cache
lookups. Each unsuccessful regular expression cache
lookup was followed by a compilation of a regular
expression from source text.

requests The number of requests.

runTime The aggregate time spent evaluating or running a module
or a program, represented as a double-precision value in
seconds.

valueCacheHits The number of successful value cache lookups. The
value cache is a transient cache that exists only for the
duration of one query. It holds typed values, and is used
to accelerate the frequent conversion of nodes to typed
values.

valueCacheMisses The number of unsuccessful value cache lookups. Each
unsuccessful value cache lookup was followed by a
conversion of an XML node to a typed value.

writeLocks The number of write locks.

Parameter Description
MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 71

MarkLogic Server Endpoints and Request Monitoring
8.5.2 Constraints on Meters

To control the number of meters that are logged, you can put the following constraints on meters:

The declaration format of a constraint is:

meter_name : {"operator":value, "operator":value, ...}

For example:

"constraints": {
"tripleCacheHits" : { "ge":1 }

}

In this example, tripleCacheHits is logged only if the the value of tripleCacheHits is >= 1.

Meters with zero or empty values are not normally logged. This is done to minimize the size of
the Request Log file. To log a zero or empty value, use the following code:

"constraints": {
"meter_name" : { "ge":0 }

}

The default constraint value on any meter is:

“gt”:0

Operator Description

lt Less than

gt Greater than

le Less than or equal to

ge Greater than or equal to
MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 72

MarkLogic Server Endpoints and Request Monitoring
8.5.3 Controlling Request Logging Using Thresholds

You can add thresholds to specify that a request is logged only when the threshold conditions are
satisfied. To declare a threshold, create a thresholds section in your *.api file as follows:

The following operators are allowed in thresholds:

To disable threshold checks on custom meters so the meters can always be logged, set the boolean
flag excludeCustom to true in the thresholds section, as follows:

{
"monitoring":{

"thresholds" : {
"elapsedTime": { "gt": 1.0 }

}
“general:

“enabled”: true
}

}

Operator Description

lt Less than

gt Greater than

le Less than or equal to

ge Greater than or equal to

{
"monitoring":{

"thresholds" : {
"excludeCustom": true,
"elapsedTime": { "gt": 1.0 }

}
“general:

“enabled”: true
}

}

MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 73

MarkLogic Server Endpoints and Request Monitoring
In the following example, the general meters for the request are logged only when the total
runtime of the request is greater than one second:

8.5.4 Enabling Request Monitoring

Request monitoring is enabled by default on the following default MarkLogic application servers:

• The default App-Services application server, normally Port 8000:

• For all requests related to the Query Console.

• For requests with runtime exceeding one second that are not related to the Query
Console. This mainly covers the REST Client API.

• The default Manage application server, normally Port 8002, for requests running longer
than one second. This covers the Configuration Manager and Monitoring Dashboard.

If request monitoring is not already enabled, you can enable request monitoring by calling any
server-side JavaScript (*.sjs) or XQuery (*.xqy) functions in files that reside in the modules
directory as declared on the HTTP server via the Admin interface, and you can create other *.api
files in the same directory or, if using the file system, in the same subdirectory as the JavaScript or
XQuery file being called. For more information on configuring HTTP servers and the modules
directory, see the “HTTP Servers” chapter in the Administrator’s Guide.

The following example enables request monitoring:

{
"monitoring":{

"thresholds" : {
"elapsedTime": { "gt": 1.0 }

}
"general" : {

"enabled": true
}

}
}

{
"monitoring":{

"general":{
"enabled":true

},
"custom":true

}
}

MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 74

MarkLogic Server Endpoints and Request Monitoring
The following example logs tripleCacheHits if the the value of tripleCacheHits is >= 0:

The following code fragment logs up to 10 documents, 10 fragments, and 4 hosts:

"constraints": {
"tripleCacheHits" : { "ge":0 }

}

"documents": 10,
"fragments" : 10,
"hosts" : 4
MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 75

MarkLogic Server Endpoints and Request Monitoring
The following example is called countdocs.api. The function getCount is defined in a file called
countdocs.sjs that resides in the same directory. The general object under the monitoring section
of the file has enable and custom set to true; this enables request logging.

{
 "functionName":"getCount",
 "params":[
 {
 "name":"collection",
 "datatype":"string",
 "multiple":false,
 "nullable":false
 },
 {
 "name":"method",
 "datatype":"int",
 "multiple":false,
 "nullable":false
 }

],
 "return":{
 "datatype":"string",
 "nullable":false,
 "multiple":false
 },

 "monitoring":{
 "general": {
 "enabled": true,
 "constraints": {
 "tripleCacheHits" : { "ge":1 }
 }
 },
 "custom": true ,
 "documents": 10,
 "fragments" : 0,
 "hosts" : 4
 }
}

MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 76

MarkLogic Server Endpoints and Request Monitoring
8.5.5 The Default Declaration File

You can configure request monitoring globally for all requests on an App Server by adding a
default.api file where the modules root is configured for the App Server (either to the modules
database or to the file system). The default.api is a JSON file that only contains a monitoring
section.

The following is a sample default.api file:

When you make a request to an endpoint and do not specify an App Server Endpoint Declaration
file, the default.api file in the module database or file directory is used if it exists. If a module
has a *.api file associated with it, the monitoring settings in the *.api file for that module are
used instead of those in the default.api file.

If you want to save the default.api file, use JavaScript:

{
"monitoring":{
 "general": {
 "enabled": true,
 "constraints": {
 "tripleCacheHits" : { "ge":0 }
 }
 },
 "custom": true,
 "documents": 10,
 "fragments" : 10,
 "hosts" : 5 }
}

declareUpdate();
xdmp.documentInsert("/default.api",{
"monitoring":{
"general": {
"enabled": true
},

"custom": true,
"documents": 10,
"fragments" : 10,
"hosts" : 5 }

});
MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 77

MarkLogic Server Endpoints and Request Monitoring
8.5.6 Request Logs

The logs for MarkLogic Server containing information about the requests you have chosen to log
are stored in the Logs directory under the MarkLogic Server data directory (typically
c:\Program Files\MarkLogic\Data\Logs on Windows, /var/opt/MarkLogic/Logs on UNIX-based
systems) in the file port_no_RequestLog.txt. Each RequestLog.txt file will contain the meters
from multiple monitored endpoints that:

• are configured on an App Server with some monitoring switched on.

• have calls to xdmp:request-log-put in their module.

The collected data is logged in JSON format at the rate of one line per request information. Even
if monitoring is completely switched off on an endpoint, calls to
xdmp:request-log-put(key,value) during a request will result in data being logged for all the
(key,value) pairs that have been stored during the request.

The following is an example of a request log where different meters are logged for two endpoints:

8.6 Request Cancelling

This section describes the procedure to setup and enable request cancelling for an endpoint, a
main module, or globally on an App Server or an XDBC Server. Request cancelling is disabled by
default for all meters. You can enable request cancelling by adding a limits section to the
monitoring section in the endpoint declaration, as in the following example:

{"time":"2018-11-09T14:07:14-08:00",
"url":"/booleanApiDecl.sjs?booleanArg=true", "user":"admin",
"result":10, "elapsedTime":0.007145, "requests":1,
"dbProgramCacheMisses":1, "dbMainModuleSequenceCacheMisses":1,
"dbLibraryModuleCacheMisses":0}

{"time":"2018-11-09T14:10:18-08:00",
"url":"/booleanApiDecl.xqy?booleanArg=true", "user":"admin",
"result":10, "elapsedTime":0.001603, "requests":1,
"dbProgramCacheMisses":1, "dbMainModuleSequenceCacheMisses":1,
"dbLibraryModuleCacheMisses":0}

{
 "monitoring": {
 "limits" : {
 "lockCount" : 100,
 "readSize" : 1000000
 }
 }
}

MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 78

MarkLogic Server Endpoints and Request Monitoring
The following limits are available:

You can update the limits configuration while the server is running without having to restart the
server.

8.7 Request Monitoring APIs

The Request Monitoring APIs are XQuery and JavaScript functions enable you to log additional
information in request logs. The following are the request monitoring functions available:

• xdmp:request-log-put

• xdmp:request-log-get

• xdmp:request-log-delete

• xdmp:set-request-limit

• xdmp.requestLogPut

• xdmp.requestLogGet

• xdmp.requestLogDelete

• xdmp:request-status

Whatever is logged with xdmp:request-log-put displays in the log files unless the custom flag is
set to false. When the custom flag is set to false, all custom logging is muted.

For more details about syntax and usage of these functions, see the AppServer functions in the
MarkLogic XQuery and XSLT Function Reference and the MarkLogic JavaScript Reference
Guide.

Meter Unit Description

elapsedTime seconds Equivalent to calling xdmp:set-request-time-limit()

readSize bytes Combined size read from disk (listSize + compressedTreeSize)

lockCount count Combined count for the number of times a read or a write lock was
acquired (readLocks + writeLocks)
MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 79

MarkLogic Server Endpoints and Request Monitoring
MarkLogic 10—May, 2019 Query Performance and Tuning Guide—Page 80

	8.0 Endpoints and Request Monitoring
	8.1 Monitoring Requests
	8.2 App Server Request Monitoring
	8.3 XDBC Server Request Monitoring
	8.3.1 XDBC Invoke Requests
	8.3.2 XDBC Eval Requests

	8.4 Task Server Monitoring
	8.5 Creating Endpoint Declarations
	8.5.1 The Endpoint Declaration File
	8.5.2 Constraints on Meters
	8.5.3 Controlling Request Logging Using Thresholds
	8.5.4 Enabling Request Monitoring
	8.5.5 The Default Declaration File
	8.5.6 Request Logs

	8.6 Request Cancelling
	8.7 Request Monitoring APIs

