

World Wide Web

ww

Perso

ore

y

merchant system

ML

Int

server

security

ne

URL

HT

r

na

community system

Ja

Mozill

Publis

Chat

encryp

SSL

TCP/IP

nal

ISt

Prox

HT

Inte

vigator

a

hing

Developer’s Handbook
Search Server and AgentXpert

for PublishingXpert
Version 2.01
comp.sys
directory server

http://www
ernet

ws

ML

mail

electronic commerce

vaScript
Proxycertificate

Publishing

tion

secure sockets layer

Netscape Communications Corporation (“Netscape”) and its licensors retain all ownership rights to the software
programs offered by Netscape (referred to herein as “Software”) and related documentation. Use of the Software and
related documentation is governed by the license agreement accompanying the Software and applicable copyright
law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or
compilation works is prohibited and constitutes a punishable violation of the law. Netscape may revise this
documentation from time to time without notice.

THIS DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL
NETSCAPE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTERRUPTION
OF BUSINESS, OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
ARISING FROM ANY ERROR IN THIS DOCUMENTATION.

The Software and documentation are copyright © 1997 Netscape Communications Corporation. All rights reserved.

Portions of this documentation copyright © 1997 Verity, Inc. All rights reserved. Portions of the Software copyright ©
1997 Netscape Communications Corporation and Actra Business Systems LLC. All right reserved. Portions of the
Software copyright © 1997 INSO Corporation. All rights reserved. Portions of the Software copyright © 1996 Personal
Library Systems. All rights reserved. The Harvest software portion of the Software was developed by the Internet
Research Task Force Research Group on Resource Discovery (IRTF-RD). Copyright © 1994-1995 Mic Bowman of
Transarc Corporation, Peter Danzig of the University of Southern California, Darren R. Hardy of the University of
Colorado at Boulder, Udi Manber of the University of Arizona, Michael F. Schwartz of the University of Colorado at
Boulder, Duane Wessels of the University of Colorado at Boulder. All rights reserved.

Netscape, Netscape Navigator, and the Netscape N logo are registered trademarks of Netscape Communications
Corporation in the United States and other countries. Other Netscape logos, product names, and service names are
also trademarks of Netscape Communications Corporation, which may be registered in other countries. Other product
and brand names are trademarks of their respective owners.

The downloading, export or reexport of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software
or documentation to the U.S. Government is with restricted rights as described in the license agreement
accompanying Netscape software.

The Team:
Engineering: Jerry Ko, Tim Walters, Jason Lim, Dong Zhang, Jenhwa Tan, Nick Huang, James Wang, Ryh-Wei Yeh,
Rick Henderson, Ravi Devesetti, Chi Nguyen, Juan Jose Mata, Roscoe Shih, Trang Le Tuyet, Jason Li, Aln Reddy,
Prasad Yendluri, Ravi Kumar, Eric Chen, Xin Chen, Kwang-Chi Liang
Marketing: Mike Micucci, Kyung Kim
Publications: Meera Holla, Laura Zupko, Meredith Tanner, Lynn Gold, Gary McCue, Bill Branca, Mike Zampiceni
Quality Assurance: Jerome Fong, Gayatri Rimola, Beverly Chan, Carl Le, Wenge Song, June Ann Martin, Chao-Sheng
Yang
Technical Support: Heather Trumbower, Harry Harper, Jeff Jones
Search Server and AgentXpert Mascot: Fuzzball

Version 2.01
©Netscape Communications Corporation 1997
All Rights Reserved
Printed in USA
97 10 9 8 7 6 5 4 3 2 1

Netscape Communications Corporation 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper

Contents

Before You Begin ..i

Audience ..i

Organization..ii

Conventions ...iii

Chapter 1 Introducing Search Server and AgentXpert5

Architectural Overview...6

Search Server and AgentXpert Framework ...8

The Search Server ..8

AgentXpert..8

Command Line Utilities and API..9

Command Line Utilities..9

Search Server API ...9

Configuring Your Environment..10

Part 1 The Search Server 13
Chapter 2 Introducing the Search Server ...15

Search Server Overview ...16

Using the Search Server..17

Search Server API Call Sequence ...18

Search Server Configuration...19

Chapter 3 The Search Server API ...21

PSACSearch ...21

Class Definition ..22

Data Types and Constants ...22

Constructors and Destructors ..23

PSASearch Methods..23

PSACSearchArg ...27

Class Definition ..28
Contents iii

Constructors and Destructors.. 28

PSASearchArg Methods ... 29

PSACSearchRes ... 40

Class Definition.. 41

Constructors and Destructors.. 42

PSASearchRes() Methods ... 42

Chapter 4 Document Loader ... 49

Overview .. 50

Document Loader Command Line Utility... 51

Parameters in Initialization Files ... 54

Creating a Publication.. 54

Deleting a Document... 57

Listing Documents in a Publication... 58

Editing Publication Information... 58

Working with Groups of Publications .. 59

Creating a New Publication Group .. 59

Deleting a Group of Publications ... 60

Changing Information in a Group of Publications .. 60

Obtaining Information About a Publication Group....................................... 61

Obtaining a List of Publication Group Names ... 62

Listing Information About a Publication ... 62

Obtaining the Names of Publications ... 64

Optimizing the Publication Index ... 64

Updating a Publication .. 65

Part 2 The AgentXpert Framework 67
Chapter 5 Introducing AgentXpert... 69

AgentXpert Overview... 70

Components of AgentXpert ... 72

Dispatcher .. 72

Command Server ... 73

Configuring and Invoking an Agent.. 74

Creating the Command Server Initialization File ... 74
iv Developer’s Handbook: Search Server and AgentXpert

Creating the Command Server Configuration File ... 76

Starting the Command Server ... 80

Starting the Dispatcher .. 81

Chapter 6 Building an Agent ... 83

Defining an Agent .. 84

Developing a New Agent... 84

Initialization Function.. 84

Agent Function... 84

Writing Functions... 85

Edit the Event Configuration File.. 89

Using Existing Agents... 90

Part 3 Appendixes 93
Appendix A Search Server Example... 95

Appendix B PublishingXpert SDK Makefile .. 99

Overview... 100

Configuring the Makefile ... 100

Listing of Makefile.basic... 102
Contents v

vi Developer’s Handbook: Search Server and AgentXpert

About This Book
his Handbook describes the operations of the Search and
AgentXpert Servers, Version 2.01 from Netscape Communica-
tions Corporation.

This preface discusses the intended audience, the organization,
and provides a listing of typographic conventions used in this
document. If you spend a few minutes looking through this

preface before reading the rest of the Handbook, you will be able to utilize the
Handbook more effectively.

Before You Begin
This handbook is written with the assumption that you understand the basics
of a relational database system and that you understand the operating system
on which you are running this software.

You do not need to be an expert on the Internet, the World Wide Web, or
HTML, but you will find it helps to know the basics of these technologies.

A knowledge of CORBA and IIOP is helpful in understanding the underlying
infrastructure, but it is not required for developing agents. Knowledge of C++ is
sufficient for writing your own agents.

Audience
This handbook is written for the site administrator maintaining a Web site
system with a range of online services. It also addresses developers who would
like to customize the software.

T

About This Book i

Organization
Organization
This Handbook has two parts. It is divided into six chapters and two
appendixes:

• Chapter 1, “Introducing Search Server and AgentXpert,” describes how the
Search and AgentXpert server modules fit into the PublishingXpert system.

Part 1: The Search Server

• Chapter 2, “Introducing the Search Server,” provides a brief introduction to
the architecture and components of the search server.

• Chapter 3, “The Search Server API,” describes the API function calls for the
search server Software Development Kit (SDK).

• Chapter 4, “Document Loader,” describes the functionality of the document
loader command-line utility psloader.

Part 2: The AgentXpert Framework

• Chapter 5, “Introducing AgentXpert,” provides a brief introduction to the
architecture, operating requirements, and components of AgentXpert. It also
explains how to modify the dispatcher and command server configuration
files.

• Chapter 6, “Building an Agent,” explains how to build an agent, describing
the four enclosed agents and how they work. It also explains how to start
and run a dispatcher and command server.

Part 3: Appendixes

• Appendix A, “Search Server Example,” contains a sample search server
application.

• Appendix B, “PublishingXpert SDK Makefile,” describes the file
Makefile.basic and how to configure it and build your software.
ii Developer’s Handbook: Search Server and AgentXpert

Conventions
Conventions
Typographic conventions are used throughout this handbook to help you
recognize special terms and instructions. These conventions are summarized in
the following table.

Convention Meaning Example or Context

boldface
items on the screen Click the Submit button to save your changes.

names of keys Press Enter to clear the message.

boldface
numbered
steps

higher level descriptions of
tasks you perform (more
detailed instructions follow)

3. Enter the group information.

Enter the name in the Group Name field, and
a short description in the Description field.

italics

key words, such as terms
that are defined in the text

The notices posted on an electronic BBS are
called articles.

names of books
For more information, refer to the Getting Started
with Netscape Navigator manual.

courier
font

command line input or
output

Enter the following command:

ls *.mle

text file content, such as
HTML templates and con-
figuration files

<TITLE>Password Check</TITLE>

code samples const char* getName() const
About This Book iii

Conventions
iv Developer’s Handbook: Search Server and AgentXpert

C h a p t e r

1
Introducing Search Server and

AgentXpert
his chapter presents an overview of the Search Server and AgentXpert
Server foundation layer in the following sections:

• Architectural Overview

• Search Server and AgentXpert Framework

• Command Line Utilities and API

• Configuring Your Environment

T

Chapter 1, Introducing Search Server and AgentXpert 5

Architectural Overview
Architectural Overview
The problem of skimming through large amounts of data and working with
them takes enormous amounts of time. Consider the problem of sending daily
news reports to users who meet a particular criteria when the user database
contains 10,000,000 IDs. If accessing each row and determining whether that
user meets the set criteria takes 10 milliseconds, the time it takes to process 10
million rows is 27.7 hours. In this case some users would get their reports one
day late. Furthermore, this delay would accumulate over time. One solution for
this could be to divide the user space and span multiple concurrent process to
do the job. Although this is a well-known technique, it requires in-depth
knowledge and experience in developing a solution.

To address this problem, the Search Server and AgentXpert framework has
been developed whereby any given computational task can be divided into a
specified number of concurrent processes to exploit the inherent parallelism.
This framework provides a dispatcher and server mechanism that lets users
control the granularity of the size of the commands each server (thread) works
on. Optimal performance is achieved by distributing these servers on different
machines.

The AgentXpert framework and search server constitute the Information
Retrieval component of the foundation layer underlying PublishingXpert.

The search server framework is based on the CORBA architecture and also has
a distributed environment. Using the search server, you can distribute a search
amongst multiple search servers running simultaneously on the same host or on
different hosts.

The following figure illustrates the Search Server and AgentXpert server
architecture.
6 Developer’s Handbook: Search Server and AgentXpert

Architectural Overview
Figure 1.1 AgentXpert architecture schematic representation

The following steps describe the interaction between the document loader, the
search server, and the AgentXpert framework:

1. The user runs the document loader (psloader) to load a publication
collection from a search engine into the search server and index it.

2. The administrator must start one or more command servers (acpsacmdsrv).

3. The user runs the dispatcher (acpsadisp) to instruct the command server to
create an agent.

4. In the example in Figure 1.1, the command server starts an agent that
accesses the search servers. The search servers return the results of the
query to the agent, which in turn sends an Acknowledgment to the
dispatcher and exits.

Document Loader

Search
Engine

Dispatcher

Command ServerSends commands
to search engine

Publication
collection

Agents

Search Servers

Web browser or UNIX command line

CORBA/IIOP

CORBA/IIOP

AgentXpert

Search Server

Loader
Chapter 1, Introducing Search Server and AgentXpert 7

Search Server and AgentXpert Framework
Search Server and AgentXpert Framework
This section briefly describes the Search Server and AgentXpert framework. For
additional information on these entities, refer to Chapter 2, “Introducing the
Search Server,” and Chapter 5, “Introducing AgentXpert,” in this handbook.

The Search Server

The search server is a feature that provides text search capabilities in
PublishingXpert. Its architecture allows multiple persistent search servers,
where each server can perform search requests for multiple clients. The
command server receives requests from a PublishingXpert Server-side
JavaScript (SSJS) client or AgentXpert’s search agent (GenerateResults).

The document loader is also part of the search server framework. The
document loader uses a third-party search engine, such as Verity or PLS, and
indexes a publication collection for the search servers.

AgentXpert

AgentXpert is a comprehensive CORBA-based agent server that provides a
scalable framework for creation, scheduling, recovery, and administration of
customized agents. Agents bundled with the AgentXpert framework include a
personalized search agent (GenerateResults), an HTML formatter
(FormatResult), a sample agent to insert an advertisement into a formatted
result (Advertiser), and one that e-mails results to a list of user IDs (Mailer).

The AgentXpert framework consists of a dispatcher server, a command server,
and several agents. The dispatcher is responsible for sending events and
messages to distributed command servers. Each command server dispatches the
event and its messages to one of the agents within the command server. Using
a search profile for each user and an agent scheduler on the administration
end, the agents shipped with AgentXpert provide a complete personalized
search application. You can customize or extend this to integrate with other
systems. Using the AgentXpert framework, you can also develop new agent-
based applications.
8 Developer’s Handbook: Search Server and AgentXpert

Command Line Utilities and API
Command Line Utilities and API
The Search Server and AgentXpert framework uses a combination of command
line utilities and an API to gather and distribute data.

Command Line Utilities

The Search Server and AgentXpert command line utilities let you bypass the
administrative forms and perform repetitive tasks.

With AgentXpert command line utilities you can:

• start a command server

• dispatch commands to various command servers

• retrieve documents from search servers

• format data and send e-mail through mail servers

Search Server API

The search server has its own API that interfaces with the underlying search
engine. Using the API in your code makes program development faster and
easier. In addition, your code can be independent of the actual search engine.
The search server allows client programs to initiate searches, configure the
search context in the server, manage document sets, and retrieve search results.

Note Netscape recommends you always use the API when writing code that accesses
the database. This way your code is not affected if the database schema
changes.
Chapter 1, Introducing Search Server and AgentXpert 9

Configuring Your Environment
Configuring Your Environment
The following files and products are necessary for using the Search Server and
AgentXpert framework.

File Locations

The default installation directories for files associated with the APIs are listed in
Table 1.1. The PS_HOME environment variable is the Netscape Applications
home directory (/.../ns-apps).

Software Versions

The following versions of the compiler were used in developing this release of
the Search Server and AgentXpert Software Development Kit (SDK). If you are
using earlier versions, you should upgrade your software before working with
the APIs.

Table 1.1 Files associated with Search Server and AgentXpert

Files For Default Location

Command Line Utilities $PS_HOME/admin/bin

C++ Include Files $PS_HOME/sdk/$CMODULE/include

C++ Lib Files $PS_HOME/lib

C++ Makefiles $PS_HOME/sdk/$CMODULE/src/Makefile

Table 1.2 Software requirements for Search Server and AgentXpert

Tools and Libraries Version

Sun C++ compiler 4.1

g++ library libgcc.a
(included in $PS_HOME/lib)

2.6.3
10 Developer’s Handbook: Search Server and AgentXpert

Configuring Your Environment
Note RogueWave version S-220 dbtools.h++ and tools.h++ header files are used
with the source code for Search Server and AgentXpert. If you want to use
RogueWave dbtools.h++ and tools.h++ classes in your development, you
must obtain a development license from RogueWave.

perl 5.000

gmake
(only needed with Netscape make
files)

3.74

Table 1.2 Software requirements for Search Server and AgentXpert (Continued)

Tools and Libraries Version
Chapter 1, Introducing Search Server and AgentXpert 11

Configuring Your Environment
12 Developer’s Handbook: Search Server and AgentXpert

1
The Search Server

• Introducing the Search Server

• The Search Server API

• Document Loader
Part 1, The Search Server 13

14 Netscape Communications Corporation, Search Server and AgentXpert Developer’s Handbook

C h a p t e r

2
Introducing the Search Server
his chapter introduces you to the search server, which is a part of the
Information Retrieval foundation layer.

This chapter contains the following sections:

• Search Server Overview

• Using the Search Server

• Search Server API Call Sequence

• Search Server Configuration

T

Chapter 2, Introducing the Search Server 15

Search Server Overview
Search Server Overview
The Search Server is based on the CORBA architecture. It allows multiple
search servers to run on the same host or on different hosts.

Search clients can communicate with search server through the Search Server
Software Development Kit (SDK), which is a set of C++ APIs, as well as through
Netscape Server Side JavaScript (SSJS).

The following figure gives an overview of the search server interface.

Figure 2.1 Search server interface

The search client API and the SSJS API communicate with the search server
through the CORBA/IIOP object request broker.

For details on the query page, the Table of Contents (TOC) page, and the
record page, see the PublishingXpert Administrator Handbook.

Query
Page

TOC
Page

Record
Page

Search
Server

Client

JavaScript API

Search Server

Side
Search

Client API

C++ Interface

HTTP Server

CORBA/IIOP Object Request Broker
16 Developer’s Handbook: Search Server and AgentXpert

Using the Search Server
Using the Search Server
Users can run multiple search servers across multiple machines. The CORBA
search server listens to the CORBA agent at port OSAGENT_PORT and responds to
all requests from CORBA clients. A CORBA agents dispatches the incoming
requests in sequential order.

Figure 2.2 shows the flow of a search initiated by a user using a web browser,
such as Netscape Communicator.

Figure 2.2 User-initiated search

The following steps are executed when a user calls the search server:

1. Using a web browser, the user initiates a search for text, such as ‘Netscape’.

HTTP Server

Server Side JavaScript
(SSJS)

Search Server
Client Library

system.ini dblist.ini

Search Engine
Dynamic Library

Search Server
#1

Search Server
#2

Search Server
#3

Search Server
#n...

Web browser

CORBA/IIOP Object Request Broker
Chapter 2, Introducing the Search Server 17

Search Server API Call Sequence
2. The search request is passed by the browser to the HTTP server, which in
turn uses a Server Side JavaScript (SSJS) interface to translate the search
string and search parameters to structures understood by the search server.

3. The client-side CORBA interface passes the search parameters to a server-
side CORBA interface that distributes the search parameters to various
search servers.

4. The various search servers all read the same system.ini and dblist.ini
files to interface with the search engine dynamic library.

5. The search engine dynamic library sends a search result set containing the
results of the search to the search servers.

6. The CORBA interface sends the search result set from the search engines to
the SSJS interface.

7. The SSJS interface processes the information in the search result set and
passes it to the HTTP server.

8. The HTTP server sends the search result set to the browser window, where
the results are presented. For the available options, see Chapter 3, “The
Search Server API.”

Search Server API Call Sequence
The following steps describe a sample call sequence for submitting a query to a
CORBA-based search server and retrieving the result.

1. Create a PSACSearch object to initialize an ORB handle.

2. Call the PSACSearch object method GetCollection() or
GetLangCollection() to obtain all name and path pairs from the search
server. The name and path pairs are used to form the SearchArg structure.
For more information on the name and path pairs, see “PSACCollSet” on
page 22 in Chapter 3, “The Search Server API.”

3. Create a PSACSearchArg object to package an argument to be sent to the
search server. For details about the PSACSearchArg class, see Chapter 3,
“The Search Server API.”
18 Developer’s Handbook: Search Server and AgentXpert

Search Server Configuration
4. Call the PSACSearch member function Search() to pass the formed search
argument to the search server and place a search result into a
PSACSearchRes object.

5. Create a PSACSearchRes object to process the results of the search. For a
detailed description of PSACSearchRes, see Chapter 3, “The Search Server
API.”

Search Server Configuration
In a search session, the client establishes a connection with one or more servers
using data from the system.ini file. The entries in the system.ini file provide
information about the search engine library, the location of the dblist.ini file,
and tracing information.

The following parameters are in the system.ini file. You, as the System
Administrator, have to provide the values for these parameters:

Parameter Section Description

NS-dblist-ini NS-search location of dblist.ini file

NS-search-eng NS-search location of search engine dynamic library

NS-dbgroup-ini NS-search location of dbgroup.ini file

trace-work-dir search_trace location of the search server trace file

trace-file-name search_trace name of search server trace file

trace-level search_trace search trace level

trace-components search_trace tracing component (should be searchserv)
Chapter 2, Introducing the Search Server 19

Search Server Configuration
The section NS-search-engine-specific in the system.ini file contains search
engine-specific information and is passed to the underlying search engine
during search server startup. For more information about the system.ini file,
see the PublishingXpert Administrator Handbook.

Netscape supports either Verity or PLS as the default search engine. When
configuring your system.ini file to use Verity as the default search engine, you
must include the line:

Vrty-lib-path = $PSHOME/lib/search/verity

If your default search engine is PLS, you must include the following line in the
system.ini file:

pls-install-dir = $PSHOME/lib/search/pls
20 Developer’s Handbook: Search Server and AgentXpert

C h a p t e r

3
The Search Server API
his chapter documents the API classes, structures, and function calls for
the search server.

PSACSearch
The PSACSearch class is a base class that establishes a CORBA connection to a
CORBA search server. The PSACSearch class initializes an ORB handle.

To query a search server, you must first create a PSACSearch object. You can
retrieve publication collection information from a remote search server using the
PSACSearch object’s GetCollection() and GetLangCollection() methods of this
class. You can also use this class to query or restart the remote search server.

Methods The following table shows the methods you can use to manipulate PSACSearch
objects:

T

Constructors and Destructors

PSACSearch() Creates a PSACSearch object.

~PSACSearch() Deletes a PSACSearch object.
Chapter 3, The Search Server API 21

PSACSearch
Class Definition
Interface searchsdk.h

Superclasses None

Subclasses None

Friend Classes None

Syntax class PSACSearch

Data Types and Constants

PSACCollSet

Defines a search collection item.

Syntax struct PSACCollSet
{
 int count;
 char **collname;
 char **collpath;

Manipulating search object parameters

GetCollection() Obtains a set of opened publications from the
search server.

GetLangCollection() Obtains a language-specific set of publications
from the search server.

Search() Searches the opened data for specified criteria and
obtains the results of the search.

Restart() Restarts the search server.

Bad() Obtains an error number.

Clear() Clears the error number buffer.
22 Developer’s Handbook: Search Server and AgentXpert

PSACSearch
}

Constructors and Destructors

PSACSearch()

Creates a PSACSearch object.

Syntax PSACsearch();

~PSACSearch()

Deletes a PSACSearch object.

Syntax ~PSACsearch();

PSASearch Methods

GetCollection()

Retrieves a list of opened publications from the search server.

Syntax PSACSearch& GetCollection(PSACCollSet *collset);

Parameters The function has the following parameters:

count The number of open data collections.

collname The collection name array.

collpath The collection path array.

PSACCollSet The collection of data being searched.
Chapter 3, The Search Server API 23

PSACSearch
Returns A list of opened collections from the search server.

Discussion If successful, the function returns a list of opened collections from the search
server; if unsuccessful, the function sets the error code to -1 to indicate the
operation failed or 0 to indicate the operation was successful.

Example // Get server collection list
if (acsearch->GetCollection(collset).Bad() == -1) {
 cout << "GetCollection failed" << endl;
 return(-1);
}

 for (i=0; i<collset.count; i++) {
 cout << "GetCollection" << i << " " << collset.collname[i] << " "
 << collset.collpath[i] << endl;
}

See Also The PSACCollSet structure on page 22.

GetLangCollection()

Retrieves a language-specific set of publications from the search server.

Syntax PSACSearch& GetLangCollection(const char *langparm,
 PSACCollSet *collset);

Parameters The function has the following parameters:

Returns A list of opened collections from the search server in the specified language.

Discussion If successful, the GetLangCollection() function returns a collection of data in a
language specified by langparm, a string of language_name;characterset
such as english;8859. If unsuccessful, the function sets the error code to -1 to
indicate the operation failed or 0 to indicate the operation was successful.

Example // Get English-only collection list}
if (acsearch->GetLangCollection(“english;8859”,collset).Bad() == -1) {
 cout << "GetLangCollection failed" << endl;
 return(-1);
}

langparm The language in which to return the search data.

PSACCollSet The collection of data being searched.
24 Developer’s Handbook: Search Server and AgentXpert

PSACSearch
See Also The GetCollection() method on page 23.

Search()

Searches the opened data for a specified parameter and assigns the results of
the search to a PSASearchRes object.

Syntax PSACSearch& Search(PSACSearchArg &srcharg, PSACSearchRes *res)

Returns The results of a search.

Discussion The Search() function passes the PSACSearch argument to a remote search
server and passes the result back into a PSACSearchRes object. If unsuccessful,
the function sets the error code to -1 to indicate the operation failed or 0 to
indicate the operation was successful.

Example if ((acsearch->Search(acsearcharg, acsearchres)).Bad() == -1) {
 cout << "Search failed." << endl;
 return(-1);
}

See Also The PSACSearchArg class on page 27. The PSACSearchRes class on page 40.

Restart()

Restarts the search server.

Syntax PSACSearch& SClient_Restart(ACSearch_var ACSearch_object);

Returns An integer: 0 if restart is successful, 1 if restart is unsuccessful.

Discussion The Restart() function rereads all configuration files and restarts all
connections made by the search server.

Example if ((acsearch->Restart()).Bad() == -1) {
 cout << "Restart failed." << endl;
 return(-1);
}

Chapter 3, The Search Server API 25

PSACSearch
Bad()

Returns an error number from the search server.

Syntax PSACSearch& SClient_Restart(ACSearch_var ACSearch_object);

Returns An integer: 0 if restart is successful, 1 if restart is unsuccessful.

Example if ((acsearch->Restart()).Bad() == -1) {
 cout << "Restart failed." << endl;
 return(-1);
}

Clear()

Clears the search server error number buffer.

Syntax PSACSearch& SClient_Restart(ACSearch_var ACSearch_object);

Returns The integer 0.

Example acsearch->Clear();
26 Developer’s Handbook: Search Server and AgentXpert

PSACSearchArg
PSACSearchArg
The PSACSearchArg class passes a search argument to a CORBA search server.

Use this class to prepare all search criteria for the PSACSearch object method
Search(), which passes the search argument structure to the search server and
fills a PSACSearchRes object with a structure containing the results of the
search.

Methods The following table shows the methods you can use to manipulate
PSACSearchArg objects:

Constructor and destructor

PSACSearchArg() Creates a PSACSearchArg object.

~PSACSearchArg() Destroys a PSACSearchArg object.

Accessor functions

AddCollection() Adds a collection of publications to the
specified search.

AddTableFields() Sets the attribute list which can retrieve the
attribute result from the search result set later.

CollectionCount() Gets the number of collection sets

FieldCount() Gets the attribute count.

FieldTableAttr() Gets a field table.

HLon() Toggles highlighting of the search string.

HLbegin() Gets or sets the value of the string marking the
beginning of highlighted data.

HLend() Gets or sets the value of the string marking the
end of highlighted data.

LargestSet() Gets or sets the maximum number of
documents the search engine can return.

MaxAttributeSize() Sets the maximum attribute size.
Chapter 3, The Search Server API 27

PSACSearchArg
Class Definition
Interface searchsdkarg.h

Superclasses PSACSearch

Subclasses None

Friend Classes None

Syntax class PSACSearchArg

Constructors and Destructors

PSACSearchArg()

Creates a PSACSearchArg object.

Syntax PSACSearchArg();

MaxRecords() Gets or sets the maximum result size that can
be passed back.

Query() Gets or sets the query string.

QueryType() Gets or sets the query parser.

SearchBase() Gets or sets the search result base.

SortBy() Gets or sets a field containing a keyword and
whether to sort in ascending or descending
order.

SummaryType() Gets or sets the summary type.
28 Developer’s Handbook: Search Server and AgentXpert

PSACSearchArg
~PSACSearchArg()

Destroys a PSACSearchArg object.

Syntax ~PSACsearchArg();

Discussion The ~PSACSearchArg function frees up all resources.

PSASearchArg Methods

AddCollection()

Adds a publication collection to the specified search.

Syntax PSACSearchArg& AddCollection(const char *collname,
 const char *collpath);

Parameters The function has the following parameters:

Returns A reference to this object.

Discussion The referenced collection of publications must already be opened by the search
server. Use the GetCollection() method to open the collection set.

Example PSACSearchArg acsearcharg;

PSACSearch::GetCollection(PSACCollSet *collset);

for (i=0; i<collset.count; i++) {

if ((acsearcharg.AddCollection(collset.collname[i],

 collset.collpath[i])).Bad() == -1) {

 cout << "AddCollection Failed: collname "

 << collset.collname[i] << endl;

 }

}

See Also The GetCollection() method on page 23.

collname A pointer to a string that specifies the name of the collection.

collpath A pointer to a string that specifies the search collection path.
Chapter 3, The Search Server API 29

PSACSearchArg
AddTableFields()

Sets the attribute list to be retrieved with the attribute result from the search
result set.

Syntax PSACSearchArg& AddTableFields(int cnt, const char *attlist);

Parameters The function has the following parameters:

Returns A reference to this object.

Discussion The attributes list (attlist) is a set of attributes separated by semicolons. For
example:

Title;Subject;Date

Example PSACSearchArg acsearcharg;

acsearcharg.AddTableFields(3,”Title;Subject;Date”);

CollectionCount()

Obtains the number of collection sets.

Syntax int CollectionCount();

Returns A reference to this object.

Discussion This function obtains the number of collection sets for this PSACSearchArg
object.

Example PSACSearchArg acsearcharg;

int coll_count = acsearcharg.CollectionCount();

cnt An integer that specifies an attribute number.

attlist A constant string that specifies an attribute list.
30 Developer’s Handbook: Search Server and AgentXpert

PSACSearchArg
FieldCount()

Obtains the number of field attributes.

Syntax int FieldCount() const;

Returns An integer value containing the number of field attributes.

Discussion This returns the number of fields the user has set in the PSACSearchArg object.

Example PSACSearchArg acsearcharg;

int field_count = acsearcharg.FieldCount();

FieldTableAttr()

Gets a field table.

Syntax const char * FieldTableAttr() const;

Returns A string containing a semicolon-separated attribute string.

Discussion A field table attribute is a semicolon-separated string the user has set in the
PSACSearchArg object.

Example PSACSearchArg acsearcharg;

char *field = acsearcharg.FieldTableAttr();

See Also The AddTableFields() method on page 30.

HLon()

Turns highlighting of the search string on or off.

Syntax PSACSearchArg& HLon(int highlighton);

Parameters The function has the following parameters:

Returns A reference to this object.

highlighton An integer that specifies whether highlighting of a search string
is on or off.
Chapter 3, The Search Server API 31

PSACSearchArg
Discussion The HLon() function sets one of the following values:

When highlighting is on, the HLon() method has the search server highlight a
search string when it is found in a document. For example, with highlighting or
search result string might appear:

This is a book.

where ‘book’ is the search string. With highlighting off, your search result string
would appear:

This is a book.

The kind of highlighting used depends on the values of HLbegin and HLend.

Example PSACSearchArg acsearcharg;

acsearcharg.HLon(1);

See Also The HLbegin() method on page 32. The HLend() method on page 33.

HLbegin()

Gets or sets the contents of a string that specifies the HTML command to use
when beginning highlighting.

Syntax const char * HLbegin() const;

PSACSearchArg &HLbegin(const char * highlightbegin);

Parameters The function has the following parameters:

Returns A pointer to a character string that contains the HTML command or a reference
to this object.

1 Turns on the highlight function.

0 Turns off the highlight function.

highlightbegin The character string to indicate the beginning of the
highlighted data.
32 Developer’s Handbook: Search Server and AgentXpert

PSACSearchArg
Discussion Use the first syntax form to obtain the highlight begin string. Use the second
form to set the value of this string. When highlighting is turned on, the search
engine inserts the characters in this string before the text being highlighted.

Example The following example shows the highlight begin string being set to , which
turns on bold text in HTML:

PSACSearchArg acsearcharg;

acsearcharg.HLbegin(“”);

The following example obtains the highlight begin string:

char *highlight_begin = acsearcharg.HLbegin();

See Also The HLon() method on page 31. The HLend() method on page 33.

HLend()

Gets or sets the contents of a string that specifies the HTML command to use
when ending highlighting.

Syntax const char * HLend() const;

PSACSearchArg &HLend(const char * highlightend)

Parameters The function has the following parameters:

Returns A pointer to a character string that contains the HTML command or a reference
to this object.

Discussion Use the first syntax form to obtain the highlight end string. Use the second form
to set the value of this string. When highlighting is turned on, the search engine
appends the characters in this string to the text being highlighted.

Example The following example shows the highlight begin string being set to ,
which turns off bold text in HTML:

PSACSearchArg acsearcharg;

acsearcharg.HLend(“”);

The following example obtains the highlight end string:

char *highlight_end = acsearcharg.HLend();

highlightend The end of the highlighted data.
Chapter 3, The Search Server API 33

PSACSearchArg
See Also The HLon() method on page 31. The HLbegin() method on page 32.

LargestSet()

Gets or sets the maximum number of documents the search engine can return.

Syntax int LargestSet() const;

PSACSearchArg& MaxAttributeSize(int LargestSet);

Parameters The function has the following parameters:

Returns An integer containing the maximum number of documents or a reference to
this object.

Discussion Use the first form of the LargestSet() method to obtain the maximum number
of documents the search engine can return. Use the second form to set the
maximum number of documents. If you do not set the size, the default value of
LargestSet is 200.

Example The following example sets the maximum number of documents the search
engine can return:

PSACSearchArg acsearcharg;

acsearcharg.LargestSet(500);

The following example obtains the maximum number of documents the search
engine can return:

int LargestSet = acsearcharg.LargestSet();

LargestSet An integer that specifies the largest set size.
34 Developer’s Handbook: Search Server and AgentXpert

PSACSearchArg
MaxAttributeSize()

Sets the maximum attribute size.

Syntax PSACSearchArg& MaxAttributeSize(int MaxAttributeSize);

Parameters The function has the following parameters:

Returns A reference to this object.

Discussion If you do not set the size, the default value is 255 characters.

Example PSACSearchArg acsearcharg;

acsearcharg.MaxAttributeSize(511);

MaxRecords()

Gets or sets the maximum number of records that can be passed back from the
search server.

Syntax int MaxRecords() const;

PSACSearchArg& MaxRecords(int MaxRecords);

Parameters The function has the following parameters:

Returns An integer containing the maximum number of records or a reference to this
object.

Discussion Use the first form of the MaxRecords() method to obtain the maximum number
of records that can be passed back from the search server. Use the second form
to set the maximum number of records. If you do not set the size, the default
value is 20 records.

MaxAttributeSize An integer that specifies the maximum attribute size.

MaxRecords An integer that specifies the maximum number of records that
can be passed back.
Chapter 3, The Search Server API 35

PSACSearchArg
Example The following example sets the maximum number of records the search engine
can return:

PSACSearchArg acsearcharg;

acsearcharg.MaxRecords(100);

The following example obtains the maximum number of records the search
engine can return:

int MaxRecords = acsearcharg.MaxRecords();

Query()

Gets or sets the query string.

Syntax const char * Query() const;

PSACSearchArg& Query(const char * query);

Parameters The function has the following parameters:

Returns A pointer to a character string that contains the value of the query string, or a
reference to this object.

Discussion Use the first form of the Query() method to obtain the query string. Use the
second form to set the value of the query string. Netscape supports the Verity
and PLS search engines. For more information on what can be in a query string,
see the documentation for your search engine.

Example The following example sets the query string:

PSACSearchArg acsearcharg;

char query[8192];

cout << "BEGIN SEARCH, enter your query:" << endl;

cin.getline(query, sizeof(query));

acsearcharg.Query(query);

The following example obtains the query string:

char *query_string = acsearcharg.Query();

query A character string containing the value of the query string.
36 Developer’s Handbook: Search Server and AgentXpert

PSACSearchArg
QueryType()

Gets or sets the query parser.

Syntax int QueryType() const;

PSACSearchArg& QueryType(int queryParser);

Parameters The function has the following parameters:

Returns An integer containing the value of the query parser, or a reference to this
object.

Discussion Use the first form of the QueryType() method to obtain the query parser. Use
the second form to set the value of the query parser. The following values of
queryParser have the following internally-set meanings:

If any other value for queryParser is passed to QueryType(), a value of -1 is
returned to indicate failure.

Example The following example sets the query parser:

PSACSearchArg acsearcharg;

cout << "ENTER QUERY PARSER (F)REETEXT, (B)OOLEAN" << endl;

char parserType[512];

cin.getline(parserType, sizeof(parserType));

 switch (*parserType) {

 case 'f':

 case 'F' : acsearcharg.QueryType(QP_FREETEXT);

 case 'b':

 case 'B' : acsearcharg.QueryType(QP_BOOLEAN);

 default: acsearcharg.QueryType(QP_BOOLEAN);

};

queryParser An integer containing a value indicating the query type

QP_BOOLEAN Boolean (value is 1).

QP_FREETEXT Free text (value is 3).

QP_PASSTHRU Pass through (value is 4).
Chapter 3, The Search Server API 37

PSACSearchArg
The following example obtains the query parser:

int query_type = acsearcharg.QueryType();

SearchBase()

Gets or sets the base value from which results of the search are returned.

Syntax int SearchBase() const;

PSACSearchArg& SearchBase(int SearchBase);

Parameters The function has the following parameters:

Returns An integer containing the base value from which results of the search are
returned, or a reference to this object.

Discussion Use the first form of the SearchBase() method to obtain the base value from
which results of the search are returned. Use the second form to set the base
value. When the results of a search are found, rather than having them all
returned at once, the search server can feed results to the browser in
increments. As the information is delivered to the browser, the search base is
increased by the increment in which the information is being delivered.

Example The following example sets the base value:

PSACSearchArg acsearcharg;

acsearcharg.SearchBase(20);

The following example obtains the base value:

int search_base = acsearcharg.SearchBase();

SortBy()

Gets or sets a field containing a keyword and whether to sort in ascending or
descending order.

Syntax const char * SortBy() const;

PSACSearchArg& SortBy(const char * sortby);

SearchBase An integer containing the value of the search result base.
38 Developer’s Handbook: Search Server and AgentXpert

PSACSearchArg
Parameters The function has the following parameters:

Returns A pointer to a character string that contains the value of a field containing a
keyword and whether to sort in ascending or descending order, or a reference
to this object.

Discussion Use the first form of the SortBy() method to set the name of the field on which
the sort is based, such as Author, Date, or Subject, and whether to sort in
ascending or descending order. Use the second form to obtain the value of the
sortby field. The sortby string consists of an attribute, such as Title, Date, or
Subject, a space, and either the keyword asc to indicate ascending order or
desc to indicate descending order, as in ‘attribute order’.

Example The following example sets the sortby string:

PSACSearchArg acsearcharg;

acsearcharg.SortBy(“Title asc”);

The following example obtains the sortby string:

char *sort_by = acsearcharg.SortBy();

SummaryType()

Gets or sets the summary type.

Syntax int SummaryType() const;

PSACSearchArg& SummaryType(int summary);

Parameters The function has the following parameters:

Returns An integer containing a value representing the summary type, or a reference to
this object.

sortby A constant string that consists of an attribute and a keyword.

summary An integer that specifies the summary type
Chapter 3, The Search Server API 39

PSACSearchRes
Discussion Use the first form of the SummaryType() method to obtain an integer
representing the summary type. Use the second form to set the summary type.
This method specifies which summary type to use to display search results. The
available integer values for SummaryType(), along with their definitions, are in
the Summarytype-N entries in the system.ini file. For example:

Summarytype-0 = 2

Summarytype-1 = KeyWORDS

SummaryType-2 = 1

SummaryType-3 = Indexed

SummaryType-4 = KeywordsDYNAMIC

SummaryType-5 = -10

SummaryType-6 = -20

SummaryType-7 = -50

Example The following example sets the summary type:

PSACSearchArg acsearcharg;

acsearcharg.SummaryType(1);

The following example obtains the summary type:

int summary_type = acsearcharg.SummaryType();

PSACSearchRes
The PSACSearchRes class returns the results of a search placed on a CORBA
search server.

Methods The following table shows the methods you can use to manipulate
PSACSearchRes objects::

Constructors and Destructors

PSACSearchRes() Creates a PSACSearchRes object.

~PSACSearchRes() Deletes a PSACSearchRes object.

Manipulating search result object parameters

AltKey() Obtains the alternate key from the offset of the
search result set.
40 Developer’s Handbook: Search Server and AgentXpert

PSACSearchRes
Class Definition
Interface searchsdkres.h

Superclasses PSACSearch

Subclasses None

Friend Classes None

Syntax class PSACSearchRes

CollName() Obtains the name of the publication collection at
the offset of the search result set.

DocPath() Obtains the document path of the offset of the
search result set.

DocsFound() Obtains the number of documents found in this
search.

DocsSearched() Obtains the number of documents searched in this
search.

DocsReturned() Obtains the names of the documents returned in
this search.

DocScore() Obtains the document score for the offset of the
returned documents.

DocType() Obtains the document type for the returned
documents.

ErrorCode() Gets an error number.

Field() Obtains the field value of a specified field for the
offset of the returned documents.

Bad() Returns an error number.

Clear() Clears the error number buffer.
Chapter 3, The Search Server API 41

PSACSearchRes
Constructors and Destructors

PSACSearchRes()

Creates a PSACSearchRes object.

Syntax PSACSearchRes()

~PSACSearchRes()

Destroys a PSACSearchRes object.

Syntax ~PSACSearchRes()

PSASearchRes() Methods

AltKey()

Gets the alternate key from the offset of the search result set.

Syntax char * AltKey(int offset);

Parameters The function has the following parameters:

Returns The alternate key from the offset of the search result set.

Discussion The alternate key is search engine-specific information a user can pass down to
a search engine.

Example PSACSearchRes acsearchres;

for (j=0; j< acsearchres.DocsReturned(); j++) {

 cout << acsearchres.AltKey(j) << endl;

}

offset An integer containing the value of the offset in the publication
set.
42 Developer’s Handbook: Search Server and AgentXpert

PSACSearchRes
Bad()

Returns an error number from the search server.

Syntax int Bad();

Returns An integer: 0 if restart is successful, 1 if restart is unsuccessful.

Example PSACSearchRes acsearchres;

if ((acsearchres->DocPath()).Bad() == -1) {
 cout << "Could not find document." << endl;
 return(-1);
}

Clear()

Clears the search server error number buffer.

Syntax PSACSearchRes& SClient_Restart(ACSearch_var ACSearch_object);

Returns The integer 0.

Example acsearchres->Clear();

CollName()

Gets the collection path of the offset of the search result set.

Syntax char * CollName(int offset);

Parameters The function has the following parameters:

Returns The name of the publication collection at the offset of the search result set.

Discussion A search can return multiple results back from multiple collections. The
GetCollectionPath() member function returns the collection paths for a
specific search result.

offset An integer containing the value of the offset in the publication
set.
Chapter 3, The Search Server API 43

PSACSearchRes
Example PSACSearchRes acsearchres;

for (j=0; j< acsearchres.DocsReturned(); j++) {

 cout << acsearchres.CollName(j) << endl;

}

DocPath()

Gets the document path of the document located at the offset of the search
result set.

Syntax char * DocPath(int offset);

Parameters The function has the following parameters:

Returns The document path of the document located at the offset of the search result
set.

Example PSACSearchRes acsearchres;

for (j=0; j< acsearchres.DocsReturned(); j++) {

cout << acsearchres.DocPath(j) << endl;

}

DocsFound()

Gets the number of documents found from this search.

Syntax int DocsFound() const;

Returns The number of documents found from this search.

Example PSACSearchRes acsearchres;

int num_of_docs = acsearchres.DocsFound();

offset An integer containing the value of the offset in the publication
set.
44 Developer’s Handbook: Search Server and AgentXpert

PSACSearchRes
DocsSearched()

Gets the number of documents searched in this search.

Syntax int DocsSearched() const;

Returns The number of documents searched in this search.

Example PSACSearchRes acsearchres;

int num_of_docs = acsearchres.DocsSearched();

DocsReturned()

Gets the number of documents returned from the set of documents found by
this search.

Syntax int DocsReturned() const;

Returns The number of documents returned from the set of documents found by this
search.

Example PSACSearchRes acsearchres;

for (j=0; j< acsearchres.DocsReturned(); j++) {

cout << acsearchres.DocPath(j) << endl;

}

DocScore()

Gets the document score for the offset of the returned documents.

Syntax int DocScore(int offset);

Parameters The function has the following parameters:

Returns The document score for the offset of the returned documents.

offset An integer containing the value of the offset in the publication
set.
Chapter 3, The Search Server API 45

PSACSearchRes
Discussion The document score is a number that determines how relevant a document is
to your search query.

Example PSACSearchRes acsearchres;

for (j=0; j< acsearchres.DocsReturned(); j++) {

cout << acsearchres.DocScore(j) << endl;

}

DocType()

Gets the document type for the document located at the offset of the returned
documents.

Syntax const char * DocType(int offset);

Parameters The function has the following parameters:

Returns The document type for the document located at the offset of the returned
documents.

Example PSACSearchRes acsearchres;

for (j=0; j< acsearchres.DocsReturned(); j++) {

cout << acsearchres.DocType(j) << endl;

}

ErrorCode()

Gets an error number.

Syntax int ErrorCode() const;

Returns The error number.

Discussion The result -1 means failure; 0 means successful.

Example PSACSearchRes acsearchres;

cout << “Error number: ” << acsearchres.ErrorCode() << endl;

offset An integer containing the value of the offset in the publication
set.
46 Developer’s Handbook: Search Server and AgentXpert

PSACSearchRes
Field()

Gets the value of a specified field of the returned documents located at the
offset.

Syntax char * Field(int offset, const char *fieldname);

Parameters The function has the following parameters:

Returns A pointer to a character string that contains the value of the specified field.

Example PSACSearchRes acsearchres;

for (j=0; j< acsearchres.DocsReturned(); j++) {

char *fieldname = acsearchres.Field(j,”Author”) << endl;

}

See Also The AddTableFields() method on page 30.

offset An integer containing the value of the offset in the publication
set.

fieldname A pointer to a character string that contains the name of the
specified field.
Chapter 3, The Search Server API 47

PSACSearchRes
48 Developer’s Handbook: Search Server and AgentXpert

C h a p t e r

4
Document Loader
his chapter explains how to use the psloader command line utility to
manipulate the document loader.

This chapter contains the following sections:

• Overview

• Creating a Publication

• Deleting a Document

• Listing Documents in a Publication

• Editing Publication Information

• Working with Groups of Publications

• Listing Information About a Publication

• Obtaining the Names of Publications

• Optimizing the Publication Index

• Updating a Publication

T

Chapter 4, Document Loader 49

Overview
Overview
The document loader takes documents and indexes the text in them for future
searches. The loader structure is shown in Figure 4.1.

Figure 4.1 Loader control structure

The document loader can be accessed either through a browser using HTML
and the Server Side JavaScript (SSJS) environment, or through the UNIX
command line utility psloader. Both interfaces access the psloader shared
library, which first reads the dblist.ini file to obtain information about
available collection lists and search engines.

Admin UI HTML

HTTP server

HTTP

Server Side JavaScript
Environment

PublishingXpert
Command Line API

(psloader)

psloader
Shared Library

Document Loader

Search Engine
Interface Library

(NSloader)

Collection Info
and Resources

(dblist.ini)

Verity/
PLS

Collection

Library
(libpsir_loader10.so)

Return to Caller
50 Developer’s Handbook: Search Server and AgentXpert

Overview
The loader then accesses a Verity or PLS search engine using the NSloader
search engine interface library. When the document collection is loaded,
command returns to the caller (either the HTML interface or the UNIX
command line.

Document Loader Command Line
Utility

The psloader utility accepts commands for the document loader. Using the
psloader utility you can determine which documents gets indexed, as well as
the granularity of the index. The loaded document can then be accessed by the
search server.

In most cases, the psloader utility computes directory and collection
information defaults, which in turn makes most commands much shorter. For
more information on publication collections, see the PublishingXpert
Administrator Handbook.

For example, to update the collection mycoll, you can use the command:

psloader update mycoll

The syntax of the psloader command line utility is:

Syntax psloader -switches arguments

Table 4.1 Switch list for the psloader utility

Switch Arguments Description

-trace_level 0, 1, 2, or 3 selects the diagnostic output level,
overriding the trace_level set in the
system.ini file; 0 is the least verbose,
and 3 is most verbose

-f filename reads attributes from file filename; if
filename is set to “-”, uses stdin

-op operation_name the name of the operation; see Table 4.2,
“Operation command arguments for the
psloader utility,” on page 53 for a
complete list
Chapter 4, Document Loader 51

Overview
Command arguments to psloader can be specified either on the command line
or in an argument file. On the command line, arguments names and values can
be specified either as -arg val or arg=val. In an external file, arguments must
be specified as arg=val, using one line per argument. The first two unnamed
arguments are assumed to have names of op and pub, referring to the operation
and publication respectively. Additional unnamed arguments are called argN
where n is the sequential number of the argument, such as arg1, arg2, and
arg3.

Thus, the following commands are equivalent:
psloader update mycoll /dir/file.html

psloader -op update -pub mycoll arg1=/dir/file.html

psloader update mycoll -f inpfile.txt

where inpfile.txt contains the line:

/dir/file.html

Note The psloader command can only handle one command argument per
invocation.

Table 4.2 shows the command arguments for the psloader command line
utility.

-arg argument an argument being passed to an
operation

-sysinipath pathname location of system.ini file; this
overrides the path $PS_HOME/config/
pubsys/system.ini

Table 4.1 Switch list for the psloader utility

Switch Arguments Description
52 Developer’s Handbook: Search Server and AgentXpert

Overview
Table 4.2 Operation command arguments for the psloader utility

Command Argument Description

create pubName pubDesc docroot [
attributes]

creates a publication named pubName
with description pubDesc in the directory
docroot; see page 54

delete pubName
{ pathName | publication }

deletes the specified document
(pubName) from a publication index
(pathName) or from an entire
publication; see page 57

edit pubName attributes changes information specified by
attributes in publication pubName; see
page 56

For more information about attributes,
see the discussion following Table 4.3,
“Parameters for the psloader create
command,” on page 54.

info pubName gets information about publication
pubName; see page 62

names [parameter] gets the names of all publications on the
system, or if an information parameter is
supplied, returns the value of the
specified publication information
parameter for each publication; see page
64

optimize pubName optimizes the index files of publication
pubName; see page 64

update [pubName [attributes]] updates documents in a collection; see
page 65
Chapter 4, Document Loader 53

Creating a Publication
Parameters in Initialization Files

The psloader create command copies the contents of the [psir/loader/
defaults] section of the system.ini file to the dblist.ini file when a
publication is created.

The psloader grpcreate command copies the contents of the [psir/loader/
grpdefaults] section of the system.ini file to the dbgroup.ini file when a
publication group is created.

You must also set the PS_HOME environment variable to point to the directory
containing your PublishingXpert files before you invoke the psloader
command line utility.

Creating a Publication
The psloader create operation creates a publication.

Syntax psloader create pubName doc-root=docrootpath [description=pubDesc]
[convert-docs=yes | no] [extract-metatags=yes | no]
[file-format=html | ascii | mail | pdf | news]
[filename-pattern=pattern [index-recurse=yes | no]
[language=langopt] [template-dir=pattern_dir] [attributes]

Table 4.3 Parameters for the psloader create command

Parameter Usage

pubName The publication name.

doc-root The path to the directory where the document resides.

description An ASCII character string that describes the publication.
(Optional)

convert-docs Specify whether to convert documents into HTML; must
be set to ‘yes’ or ‘no’. The default value is ‘no’. (Optional)

extract-metatags specify whether to extract HTML metatags; must be set to
yes or no. The default value is ‘no’. (Optional)
54 Developer’s Handbook: Search Server and AgentXpert

Creating a Publication
file-format Format of the document file or files; must be set to ‘html’,
‘ascii’, ‘mail’, ‘pdf’, ‘meta’, or ‘news’. The default value is
‘html’. (Optional)

filename-pattern A wildcard pattern, such as *.html, that specifies a
group of document files. (Optional)

Note: There is no default value, but Netscape
recommends you use the following patterns for certain
types of files:

• HTML files: *.html

• news or mail files: *

• ASCII files: *.txt

• PDF (Acrobat) files: *.pdf

• meta files: *.meta

index-recurse Indicates whether documents in subdirectories of the
publication's main directory are included in the
publication; must be set to ‘yes’ or ‘no’. The default value
is ‘yes’. (Optional)

language The language in which the publication is presented. The
languages supported by Netscape are ‘dutch;8859’,
‘english;8859’, ‘french;8859’, ‘german;8859’, italian;8859’,
norwegian;8859’, portuguese;8859’, spanish;8859’, and
‘swedish;8859’; the default value is ‘english;8859’.
(Optional)

Note: Your search engine might support a different set of
languages. See the documentation with your search
engine for details.

Table 4.3 Parameters for the psloader create command (Continued)

Parameter Usage
Chapter 4, Document Loader 55

Creating a Publication
Discussion The attribute arguments define attribute information in the following format:

description=Publication_Description

attr-nameN=attribute_name_N

attr-aliasN=attribute_alias_N

attr-typeN=attribute_type_N

where:

Example psloader create mypublication doc-root=$ACHOME/mydocuments

template-dir A directory containing templates used by
PublishingXpert user search applications such as
psquery to find patterns in documents. (Optional)

For information on the psquery application, see the
PublishingXpert Administrator Handbook.

attributes These define attribute information; see the Discussion
following this table for more information. (Optional)

Table 4.3 Parameters for the psloader create command (Continued)

Parameter Usage

attr-nameN is the Nth attribute name, such as attr-name1, attr-name2,
and attr-name3, and attribute_name_N is a string defining
the name of the attribute, such as Title

attr-aliasN is the Nth attribute alias, such as attr-alias1,
attr-alias2, and attr-alias3, and attribute_alias_N
is an alternate search alias for the tag. For example, an alias of
Subject could be added to Title to enable searching under
both attribute names

attr-typeN is the Nth attribute type, such as attr-type1, attr-type2,
and attr-type3, and attribute_type_N is the type of
attribute. Acceptable values are text, date, numeric, and
zone; the default value is text
56 Developer’s Handbook: Search Server and AgentXpert

Deleting a Document
Deleting a Document
The psloader delete command deletes a document from the publication index
or a publication from the system. If an entire publication is deleted, converted
documents are also deleted.

Syntax psloader delete pubName { pathname | publication | missing }

Discussion The psloader delete command requires either a pathname, the keyword
publication, or the keyword missing. If the single keyword publication is
given as an argument, the entire publication is removed. If the keyword
missing is given as an argument, all documents for which there is no source
file are deleted. Otherwise, only individual filenames are removed from the
index. Multiple documents can be removed with the same psloader delete
command.

Example psloader delete mypub publication

Table 4.4 Parameters for the psloader delete command

Parameter Usage

pubName The publication name.

pathname The path name of the document to delete from the
index.

publication Remove the entire publication; use instead of pathName.

missing Delete all documents in the index file for which the
source file no longer exists.
Chapter 4, Document Loader 57

Listing Documents in a Publication
Listing Documents in a Publication
The psloader docnames command lists the pathnames of all documents in a
publication.

Syntax psloader docnames pubName

Example psloader docnames mypub

Editing Publication Information
The psloader edit command edits information about a publication.

Syntax psloader edit pubName [properties]

Discussion If the single keyword publication is given as an argument, the entire
publication is removed; otherwise, only individual filenames are removed from
the index.

Example psloader edit mypub convert-docs=yes description=”My New Title” \
filename-pattern=*.html

Table 4.5 Parameters for the psloader docnames command

Parameter Usage

pubName The publication name.

Table 4.6 Parameters for the psloader edit command

Parameter Usage

pubName The publication name.

properties These define property information; see the Discussion
following Table 4.3, “Parameters for the psloader create
command,” on page 54 for more information. (Optional)

Note: File format and language properties cannot be
changed with the psloader edit command.
58 Developer’s Handbook: Search Server and AgentXpert

Working with Groups of Publications
Working with Groups of Publications
The following psloader commands enable you to manipulate groups of
documents. The following operations are available:

• Creating a New Publication Group

• Deleting a Group of Publications

• Changing Information in a Group of Publications

• Obtaining Information About a Publication Group

• Obtaining a List of Publication Group Names

Creating a New Publication Group

The psloader grpcreate command creates a new publication group.

Syntax psloader grpcreate groupName [pubName1 pubName2...] [properties]

Example psloader grpcreate mygroup mypub1 mypub2 \
description=”My Publication Group”

To create a group named All containing every publication name, enter:

psloader names | psloader grpcreate All \
description=”Every Publication” -f -

See also “Obtaining the Names of Publications” on page 64.

Table 4.7 Parameters for the psloader grpcreate command

Parameter Usage

groupName The publication group name.

pubName1, pubname2... The publication name.

properties These define property information; see the Discussion
following Table 4.3, “Parameters for the psloader create
command,” on page 54 for more information. (Optional)
Chapter 4, Document Loader 59

Working with Groups of Publications
Deleting a Group of Publications

The psloader grpdelete command removes a group of publications.

Syntax psloader grpdelete groupName { pubName | group }

Discussion The group keyword deletes an entire section from the dbgroup.ini file; a
publication name argument causes the entry to be deleted from a section in the
dbgroup.ini file.

Example psloader grpdelete mygroup mypub

Changing Information in a Group of
Publications

The psloader grpedit command changes the information in a group of
publications.

Syntax psloader grpedit groupName [pubName1 pubName2...] [properties]

Table 4.8 Parameters for the psloader grpdelete command

Parameter Usage

groupName The publication group name.

pubName The publication name.

group Keyword; a list of publications.

Table 4.9 Parameters for the psloader grpedit command

Parameter Usage

groupName The publication group name.
60 Developer’s Handbook: Search Server and AgentXpert

Working with Groups of Publications
Discussion If you do not enter a publication name, the psloader grpedit command
changes your publication group to contain zero publications.

Example psloader grpedit mygroup mypub1 mypub2 \
description=”My Publication Group”

Obtaining Information About a
Publication Group

The psloader grpinfo command returns information about a publication
group.

Syntax psloader grpinfo groupName

Example psloader grpinfo mygroup

pubName1 pubname2... The publication name.

properties These define property information; see the Discussion
following Table 4.3, “Parameters for the psloader create
command,” on page 54 for more information. (Optional)

Table 4.9 Parameters for the psloader grpedit command (Continued)

Parameter Usage

Table 4.10 Parameters for the psloader grpinfo command

Parameter Usage

groupName The publication group name.
Chapter 4, Document Loader 61

Listing Information About a Publication
Obtaining a List of Publication Group
Names

The psloader grpnames command returns a list of publication group names.

Syntax psloader grpnames

Discussion The psloader grpnames command returns the list in the format of one
publication group per line to the standard output (stdout).

Example psloader grpnames

Listing Information About a Publication
The psloader info command returns information about a publication.

Syntax psloader info pubName

Discussion Information is returned for the named publication. The output is sent to the
standard output and is similar to the data in the dblist.ini file. For example:

attr-name1=author

attr-type1=text

attr-name2=Title

attr-type2=text

attr-name3=SourceType

attr-type3=text

convert-docs=no

description=Publication a1 - Documents in /tmp

doc-root=/tmp

extract-metatags=no

file-format=html

filename-pattern=*.html

index-recurse=no

Table 4.11 Parameters for the psloader info command

Parameter Usage

pubName The publication name.
62 Developer’s Handbook: Search Server and AgentXpert

Listing Information About a Publication
language=german;8859

template-dir=/h/aura/d2/ns-apps-20/lib/locale/en/psir/templates

The following table explains each line in the example:

Line Description

attr-name1=author first attribute name; here the value is set to author

attr-type1=text first attribute type; here the value is set to text

attr-name2=Title second attribute name; here the value is set to Title

attr-type2=text second attribute title; here the value is set to text

attr-name3=SourceType \SourceType

attr-type3=text third attribute type; here the value is set to text

convert-docs=no do not convert the documents to HTML

description=
Publication a1 -
Documents in /tmp

an ASCII character string describing the publication; here
the value is set to Publication a1 - Documents in
/tmp

doc-root=/tmp the path to the directory where the document resides;
here the value is set to /tmp

extract-metatags=no metatags are not being extracted

file-format=html format of the document file or files; here the value is
set to html

filename-pattern=*.html a wildcard pattern that specifies a group of document
files; here the pattern is *.html

index-recurse=no documents in subdirectories of the publication's main
directory are not included in the publication

language=german;8859 The language in which the publication is presented;
here the value of language is german;8859.

template-dir=/h/aura/d2/
ns-apps-20/lib/locale/en/
psir/templates

Utilities such as psquery are to use templates located in
the directory /h/aura/d2/ns-apps-20/lib/locale/
en/psir/templates to find patterns in documents.
Chapter 4, Document Loader 63

Obtaining the Names of Publications
Obtaining the Names of Publications
The psloader names command returns the names of all publications on the
system, or returns the value of a single publication and information item for
each publication.

Syntax psloader names [information_item]

Discussion See “Creating a Publication” on page 54 for a list of possible attributes and
parameters.

Example psloader names doc-root

Optimizing the Publication Index
The psloader optimize command optimizes the collecting of publications.

Syntax psloader optimize pubName

Discussion The publication collection’s index can contain many entries spread across many
files. The psloader optimize command uses the search engine’s optimization
algorithms to make the searching the index faster, such as consolidating
information into fewer files. See your search engine’s documentation for more
details on how optimization works.

Table 4.12 Parameters for the psloader names command

Parameter Usage

information_item An information item, such as an attribute or a keyword.
(Optional)

Table 4.13 Parameters for the psloader optimize command

Parameter Usage

pubName The publication name.
64 Developer’s Handbook: Search Server and AgentXpert

Updating a Publication
Updating a Publication
The psloader update command updates the document index in a publication.

Syntax psloader update pubName [filepath] [modify-time=newer_than]

Discussion If no pathname is specified, psloader update looks for all documents under
the doc-root, compares their index times to the time last indexed, and updates
any documents that have changed.

Example psloader update my_publication /docs/mypub/*.html

Table 4.14 Parameters for the psloader update command

Parameter Usage

pubName The publication name.

filepath The pathname of a specific file to be reindexed or
deleted. (Optional)

modify-time The document modified time in ISO 8601 format:

yyyy-mm-dd hh:mm:ssZ

where Z indicates Universal Time (UTC); the time from
which documents are to be considered for updating. If
newer_than is an empty string, all files are indexed.
(Optional)
Chapter 4, Document Loader 65

Updating a Publication
66 Developer’s Handbook: Search Server and AgentXpert

2
The AgentXpert Framework

• Introducing AgentXpert

• Building an Agent
Part 2, The AgentXpert Framework 67

68 Developer’s Handbook: Search Server and AgentXpert

C h a p t e r

5
Introducing AgentXpert
his chapter provides a description of AgentXpert, a framework that lets
you develop custom agents for various tasks. It introduces you to

AgentXpert concepts, components, and processes.

This chapter contains the following sections:

• AgentXpert Overview

• Components of AgentXpert

• Configuring and Invoking an Agent

T

Chapter 5, Introducing AgentXpert 69

AgentXpert Overview
AgentXpert Overview
The AgentXpert framework consists of a dispatcher and one or more command
servers. A command server waits for commands from the dispatcher and
processes those commands. A command specifies which agent is to be
invoked.

The dispatcher sends commands to one or more command servers. The
dispatcher takes the input file and the information about the agent to be
invoked and sends it to the command servers.

The dispatcher can be invoked in two modes:

• blocking

In this mode, the dispatcher waits, blocking further input, until it receives
all acknowledgments.

• timeout (default)

In this mode, the dispatcher times out after a period of time determined by
the command servers. Each command server specifies its own timeout
period.

There is no limit to the number of command servers you can have. If there is
more than one command server available, the dispatcher balances the load
equally among the available command servers.

Using the AgentXpert framework, you can develop agents that can respond to a
variety of events and take specified actions. For example, you can develop
agents that search through collections of documents based on profile
information stored in the database and distribute those search results to
subscribers.

Figure 5.1 contains a diagram of an AgentXpert framework scenario.
70 Developer’s Handbook: Search Server and AgentXpert

AgentXpert Overview
Figure 5.1 The AgentXpert framework

Dispatcher Role Command Server Role

Initialize variables and objects

Dispatcher process
is started from the
UNIX command line

Command server process
is started from the
UNIX command line

Initialize variables and objects

Load agent libraries

Event?

Start Recovery object

Start Acknowledgment object

Read input file with user IDsTo other
command
servers

yes Have all

no

yes

Call corresponding agent function

yes

Exit the dispatcher

To other
command
servers

From other
command
servers

Acknowledgments
been received?

Is blocking
mode on?

Is timeout
period over?

Exit the
dispatcher

no

no

yes

CORBA/IIOP

no

Event has
completed;
return to wait
for more events

Get configuration information
from command servers

Use configuration information
to spawn separate threads and

dispatcher command sets

Send Acknowledgment

Wait for Acknowledgments

Agent libraries are loaded;
wait for event
Chapter 5, Introducing AgentXpert 71

Components of AgentXpert
Components of AgentXpert
The two main components of the AgentXpert framework are:

• the Dispatcher

• the Command Server

This section gives an overview of how each of them work.

Dispatcher

The dispatcher provides a means to distribute events to command servers. It
takes an event name, command name, and a list of name-value pairs and
distributes them to one or more command servers. Each command server, in
turn, sends an event specified by the dispatcher to a corresponding agent.

As part of every event, the dispatcher includes an IIOP reference of an
Acknowledgment object. This object provides a callback mechanism for the
agent to notify the dispatcher of the success or failure of an event.

When activated, the dispatcher performs the following sequence of steps:

1. All variables and object request brokers (ORBs) are initialized.

2. The dispatcher creates an event to query the command servers for their
configuration information (timeout period and the number of threads the
command servers can support).

3. The Recovery object is started.

4. The Acknowledgment object is started.

5. The dispatcher reads an input file containing user IDs or e-mail addresses.

6. The dispatcher uses configuration information to spawn separate threads
and dispatcher command sets.

7. If all Acknowledgment messages have been received, exit the dispatcher.

8. If blocking mode is on (the dispatcher is blocked from further input),
continue to wait for Acknowledgment messages (step 7).
72 Developer’s Handbook: Search Server and AgentXpert

Components of AgentXpert
9. If blocking mode is not set, and if the timeout period is over, the dispatcher
exits; otherwise, the dispatcher continues to wait for Acknowledgment
messages (step 7).

Command Server

The command server functions as a gateway for various events, deciding which
event goes to which agent. When the command server decides an event goes to
a particular agent, it builds an event structure and passes it to the agent
function. Each agent must be able to interpret the contents of an event to
correctly act upon the information contained in the event.

The command server is also a full-fledged CORBA object. Agents sit on the
command server side and wait for events. When activated by an event from the
dispatcher, the command server performs the following sequence of steps (see
Figure 5.1 on page 71):

1. The object request broker (ORB) and all variables are initialized.

2. The command server loads agents from the configuration file
(psasrvevent.conf).

3. The command server waits for events. When an event arrives, the command
server invokes the agent to which the event has been sent.

4. If there is a valid Acknowledgment reference, the command server sends an
Acknowledgment message.

5. When the event has completed, the command server repeats step 3 to wait
for more events.
Chapter 5, Introducing AgentXpert 73

Configuring and Invoking an Agent
Configuring and Invoking an Agent
This section describes the steps you must follow to configure and invoke the
agents distributed with Search Server and AgentXpert. The topics discussed are:

• Creating the Command Server Initialization File

• Creating the Command Server Configuration File

• Starting the Command Server

• Starting the Dispatcher

The agents included with Search Server and AgentXpert are described in the
section “Using Existing Agents” on page 90 in Chapter 6, “Building an Agent.”

Creating the Command Server
Initialization File

You must create the command server initialization file acpsacmdsrv.ini for the
command server to run. The following is a sample acpsacmdsrv.ini file with a
description of its components.

Note The command server reads the acpsacmdsrv.ini file only once: when the
command server is first started. If you change any of the command server
configuration files, you must restart the command server for your changes to
take effect.

Trace file setup

[acpsacmdsrv_trace]

trace-work-dir = .

trace-file-name = trace_acpsacmdsrv.log

trace-level = 3
trace-components = acpsacmdsrv

acpsacmdsrv configuration

74 Developer’s Handbook: Search Server and AgentXpert

Configuring and Invoking an Agent
This is the Command Server configuration section of the init file

[acpsacmdsrv_conf]

ACPSA-srv-priority = 0

ACPSA-srv-instance-num = 6

ACPSA-srv-cmdack-timeout = 60

The following table explains each line in the acpsacmdsrv.ini file. The pound-
sign (#) character at the beginning of a line denotes a comment.

Line Description

[acpsacmdsrv_trace] identifies is the trace section of the initialization file. Use
the trace file when you want to trace the execution for
troubleshooting

trace-work-dir = . the directory where you want to put the trace log; in this
example it is the current working directory

trace-file-name =
trace_acpsacmdsrv.log

the log file for the trace; here it’s set to
trace_acpsacmdserv.log

trace-level = 3 the level of trace information to be supplied; can be 0, 1,
2, or 3, with 0 being least verbose and 3 being most
verbose. In this example it is set to the most verbose
mode.

trace-components =
acpsacmdsrv

the trace component name; defaults to acpsacmdsrv.
Do not change this name

[acpsacmdsrv_conf] identifies the command server configuration section of
the initialization file

ACPSA-srv-priority = 0 reserved for future use

ACPSA-srv-instance-num
= 6

specifies the number of threads the command server can
spawn; this example specifies 6 threads

ACPSA-srv-cmdack-
timeout = 60

sets the duration in seconds the Event Dispatcher waits
for Acknowledgment; in this example it is set to 60
seconds
Chapter 5, Introducing AgentXpert 75

Configuring and Invoking an Agent
Creating the Command Server
Configuration File

The command server looks for a configuration file called psasrvevent.conf
that contains event specifications. The entries to specify an agent are:

• Event name: a unique name given to a particular event or agent. This
name is used by the AgentXpert scheduler user interface to identify an
agent. It is represented by surrounding square brackets; for example:

[MyAgent]

An indent name may be any alphanumeric string but may not contain
spaces.

• Command name: the name given to the function that corresponds to the
agent. It is specified using the syntax:

command_name = event_template

where event_template is the template agent function name.

• Execute command: the command line syntax for running the dispatcher
with different events. This keyword is also used by the PSAdmin
AgentXpert scheduler to schedule batch jobs using the UNIX at system
command. (See Getting Started with the PublishingXpert System for more
information on the PSAdmin commands.)

• Library name: the name of the library that contains the agent function:

library_name = libpsagent_eventtemplate10.so

If the LD_LIBRARY_PATH environment variable is not set, you must specify
the absolute path. For example:

library_name = /usr/ps2.01/libs/libpsagent_eventtemplate10.so

• Initialization function name: the initialization function that must be
called when the library is loaded for the first time. This can be an empty
function, but it must be present in the library:

init_function_name = event_template_init
76 Developer’s Handbook: Search Server and AgentXpert

Configuring and Invoking an Agent
For example, if the name of your agent is ‘MyAgent’ and the function names are
myagent_init() and myagent(), your configuration file entry will look similar
to the following:

[MyAgent]

command_name = myagent # agent function name

execute_command = acpsadisp dispatcher dispatcherRole -e MYAGENT -c
myagent -f input.users

library_name = libmyagent10.so # agent dynamic library

init_function_name = myagent_init # Initialization function

The following table explains each line in the psasrvevent.conf configuration
file:

Note Each event name must be unique. If there are multiple events with the same
name, the command server only recognizes the first one in the file.

Line Description

[MyAgent] The event name of this section in the
psasrvevent.conf file; in this example, the event
name is ‘MyAgent’.

command_name =
myagent

The agent function name; in this case, the name
myagent has been given to the function that
corresponds to the agent ‘MyAgent’.

execute_command =
acpsadisp dispatcher
dispatcherRole -e
MYAGENT -c myagent -f
input.users

Executes a command from the UNIX shell; in this case,
the command is ‘acpsadisp dispatcher dispatcherRole -
e MYAGENT -c myagent -f input.users’.

library_name =
libmyagent10.so

The agent’s dynamic library; libmyagent10.so
contains the agent function.

init_function_name =
myagent_init

The name of the initialization function; instructs the
command server to call the initialization function
myagent_init when the library libmygent10.so is
first loaded.
Chapter 5, Introducing AgentXpert 77

Configuring and Invoking an Agent
The following psasrvevent.conf file defines the four agents included with
Search Server and AgentXpert, as well as several related functions:

[GenerateUserList]

command_name = dummyfunc

execute_cmd = acpsadisp userList writeUserQueryList -f input.users

library_name = libpsagent_psaevents10.so

init_function_name = dummyfunc

[GenerateResult]

command_name = psaGenRes

execute_cmd = acpsadisp dispatcher dispatcherRole -e GenerateResult -c
psaGenRes -f input.users

library_name = libpsagent_psaevents10.so

init_function_name = psaGenRes_init

[FormatResult]

command_name = psaFrmRes

execute_cmd = acpsadisp dispatcher dispatcherRole -e FormatResult -c
psaFrmRes -f input.users

library_name = libpsagent_psaevents10.so

init_function_name = psaFrmRes_init

[Advertiser]

command_name = advtsr

execute_cmd = acpsadisp dispatcher dispatcherRole -e Advertiser -c
advtsr -f input.users

library_name = libpsagent_psaevents10.so

init_function_name = advtsr_init

[Mailer]

command_name = mail_event

execute_cmd = acpsadisp dispatcher dispatcherRole -e Mailer -c
mail_event -f input.users

library_name = libpsagent_psaevents10.so

init_function_name = mail_event_init

[Message_Mailer]

command_name = message_mail

execute_cmd = acpsadisp dispatcher dispatcherRole -e Mailer -c
mail_event -f input.emails -M

library_name = libpsagent_psaevents10.so

init_function_name = mail_event_init
78 Developer’s Handbook: Search Server and AgentXpert

Configuring and Invoking an Agent
[DummyEvent]

command_name = event_template

execute_cmd = acpsadisp dispatcher dispatcherRole -e event_template -c
event_template

library_name = libpsagent_eventtemplate10.so

init_function_name = event_template_init

This file tells the command server to load the GenerateUserList,
GenerateResult, FormatResult, Advertiser, Mailer, Message_Mailer, and
DummyEvent agents. The following table explains the first ten lines in the
configuration file:

Line Description

[GenerateUserList] The event name of this section in the
psasrvevent.conf file; here it is
GenerateUserList.

command_name =
dummyfunc

the agent function name; the name dummyfunc has
been used so AgentXpert can schedule this function.
This is actually a special dispatcher that queries the
membership database to generate a list of users.

execute_cmd = acpsadisp
userList
writeUserQueryList -f
input.users

Executes a command from the UNIX shell; in this case,
the command is ‘acpsadisp userList writeUserQueryList
-f input.users’.

library_name =
libpsagent_psaevents10.so

The agent dynamic library; in this example, the library
libpsagent_psaevents10.so contains the agent
function

init_function_name =
dummyfunc

The name of the initialization function; tells the
command server to call the function dummyfunc when
the library libpsagent_psaevents10.so is first
loaded

[GenerateResult] The event name of this section in the
psasrvevent.conf file; here it is GenerateResult.
Chapter 5, Introducing AgentXpert 79

Configuring and Invoking an Agent
See “Using Existing Agents” on page 90 in Chapter 6, “Building an Agent,” for
more information.

Starting the Command Server

Use the acpsacmdsrv command line utility in a terminal window to start a
command server:

Syntax acpsacmdsrv command_server

command_name =
psaGenRes

The agent function name; the name psaGenRes has
been given to the function the agent GenerateResult
serves.

execute_command =
acpsadisp dispatcher
dispatcherRole -e
GenerateResult -c
psaGenRes -f input.users

Executes a command from the UNIX shell; in this case,
the command is ‘acpsadisp dispatcher dispatcherRole -
e GenerateResult -c psaGenRes -f input.users’.

library_name =
libpsagent_psaevents10.so

The agent dynamic library; in this example, the library
libpsagent_psaevents10.so contains the agent
function.

init_function_name =
psaGenRes_init

The name of the initialization function; tells the
command server to call the function psaGenRes_init
when the library libpsagent_psaevents10.so is
first loaded.

Line Description

Table 5.1 Parameter list for the acpsacmdsrv utility

Switch Arguments Description

command_server name of the Command Server
80 Developer’s Handbook: Search Server and AgentXpert

Configuring and Invoking an Agent
Discussion To start more than one command server on the same command line, use
semicolons to separate the commands. For example:

acpsacmdsrv cmdsrv1 & ; acpsacmdsrv cmdsrv2 & ; acpsacmdsrv cmdsrv3 &

Example acpsacmdsrv cmdsrv &

Starting the Dispatcher

Start the dispatcher using the acpsadisp command line utility:

Syntax acpsadisp dispatcher dispatcherRole -e event_name [event_name2...]
 -c command_name -f user_IDs_file [-b]

Discussion You can also send multiple commands to the dispatcher using the following
syntax:

acpsadisp dispatcher dispatcherRole -e event1,event2,event3
 -c command1,command2,command3 -f sample.users

Table 5.2 Parameter list for the acpsacmdsrv utility

Switch Arguments Description

dispatcher the name of the library from which to
draw commands

dispatcherRole constant; tells the program to assume a
Dispatcher role. Use the dispatcherRole
constant to generate a list of user IDs

-e event_name the unique name given to a particular
event or agent

-c command_name the name given to the function the agent
serves

-f user_IDs_file the name of the file containing a list of
user IDs

-b specifies blocking mode (Optional)
Chapter 5, Introducing AgentXpert 81

Configuring and Invoking an Agent
Example acpsadisp dispatcher dispatcherRole -e GenerateResult, FormatResult,\
 Mailer -c psaGenRes, psaFrmRes, mail_event -f sample.users
82 Developer’s Handbook: Search Server and AgentXpert

C h a p t e r

6
Building an Agent
his chapter provides a road map for developing an agent. An agent
template is provided as part of the explanation on how to build one. This

template file is located in the $PS_HOME/SDK/agentXpert directory in your
installation. Netscape recommends compiling and testing this agent before you
build one of your own.

This chapter contains the following sections:

• Defining an Agent

• Developing a New Agent

• Using Existing Agents

T

Chapter 6, Building an Agent 83

Defining an Agent
Defining an Agent
Before embarking on any development, you should familiarize yourself with
the architecture and the composition of the various components of AgentXpert.

Agents are shared library functions. They are loaded by the command server at startup
time; once loaded, they wait for events. The command server is the gateway for
various events, deciding which event goes to which agent. After the command server
decides to dispatch an event to a particular agent, the command server builds an
event structure and passes it to the agent function as a void pointer. An agent must
be aware of the contents of the structure to make use of the information it contains.

Developing a New Agent
All agents must contain the following two functions:

• an Initialization Function

• an Agent Function

Initialization Function

The signature of the initialization function must be int myagent_Init(void *).
The function must return 1 on success and 0 (zero) on failure. Use this function to
initialize your agent. This function is called by the command server only at the time
the dynamic library (*.so) is loaded.

Agent Function

The signature of the agent function must be int myagent(void *). The
function must return 1 on success and 0 (zero) on failure. When a command
server receives a request for your agent function, the agent function is invoked
with an appropriate event structure.

Note Netscape recommends that you not write an agent that invokes or creates a
separate process using fork, vfork, or similar methods, as this is not part of
the AgentXpert framework.
84 Developer’s Handbook: Search Server and AgentXpert

Developing a New Agent
Writing Functions

The following example shows the two functions that implement an agent. The
event_template_init function initializes the agent; the
event_template function interprets the event structure and performs the
desired action.

//------------include necessary files--------------

#include <iostream.h>

#include <fstream.h>

#include "eventtemplate.h"

#include "axeventdispatcher.h"

//--------------------------------

#define TRUE 1

#define FALSE 0

//-------------------------------------

//System variables

//While building your event application you put your own

//variables and definitions here

#define tempFileName "dummyEvent.log"

ofstream fop;

//--

//init function template:

// This function does all the initialization of the event

// processing. If properly done, it helps you avoid lots

// of costly mistakes

//-------------------------------

// This must be defined as a C function to prevent Name Mangling

extern "C"

int event_template_init (void *msgStruct)

{

 //STEP 1

 //Initialize

 cout <<"Event template initialization done..." << endl;

 //dummy operations

 fop.open(tempFileName,ios::out);
Chapter 6, Building an Agent 85

Developing a New Agent
 fop << "Initialization done....."<< endl;

 //STEP 2

 // depending on the success or failure of your processing

 // return TRUE or FALSE

 // This is to show you must return

 // TRUE or FALSE in appropriate cases

 if(!(1))

 {

 return FALSE;

 }

 else {

 return TRUE;

 }

}

//--------------------------------------

//This is the actual agent function event_template.

//Follow the steps described in the code

//---------------------------------------

extern "C"

int event_template(void *msgStruct)

{

 axEventDispatcher *test=0;

 //STEP 1

 // Pass the msgStruct to the structure

 // The class axEventDispatcher is obtaining an event

 // with structure msgStruct

 test = axEventDispatcher::getAxEvent(msgStruct);

 if(!test)

 {

 cout << "Event conversion failed" << endl;

 return FALSE;

 }

 //STEP 2

 RWCString nameStr;

 RWCString valStr;

 // do your preprocessing

 // The following sample code prints out all the name/value pairs

while((test->getNameValuePair(nameStr,valStr)).Good())
86 Developer’s Handbook: Search Server and AgentXpert

Developing a New Agent
 {

 cout << "Name= " << nameStr.data() << " ;Value = " <<
valStr.data() << endl;

 }

 fop << "Done Processing...."<< endl;

 fop.flush();

 // get rid of memory we don't need

 delete test;

 //STEP 3 return TRUE/FALSE

 if(!(1))

 {

 return FALSE;

 }

 else {

 return TRUE;

 }

}

The next example uses methods from the axEventDispatcher class. The
getNameValuePair() method obtains the next parameter from the event
structure. The following is the definition file for the agentEvent class
(axeventdispatcher.h):

#ifndef _AXEVENTDISPATCHER_H_

#define _AXEVENTDISPATCHER_H_

#include <rw/slistcol.h>

#include <rw/gslist.h>

#include "acpsafrmwrk_c.hh"

//DEFINES

#define AX_NOERROR 0

#define AX_SUCCESS 0

#define AX_FAILURE 1

#define AX_NVLISTEMPTY 3

#define AX_ORBINITFAILURE 4

#define AX_CMDSERVER_BINDFAILURE 5

#define AX_UNKNOWN_ERROR 6

//typedef struct namevalue pair
Chapter 6, Building an Agent 87

Developing a New Agent
class nvPair{

 public:

 nvPair();

 ~nvPair();

void setName(RWCString name);

RWCString getName();

void setValue(RWCString value);

RWCString getValue();

private:

 RWCString name_;

 RWCString value_;

};

typedef class nvPair NVPAIRRECORD;

//RANGERECORD;

declare(RWGSlist,NVPAIRRECORD);

typedef RWGSlist(NVPAIRRECORD) NVPAIR_LIST;

class axEventDispatcher

{

public:

 axEventDispatcher();

 ~axEventDispatcher();

 axEventDispatcher& addNameValuePair(RWCString,RWCString);

 axEventDispatcher& getNameValuePair(RWCString&,RWCString&);

 axEventDispatcher& sendEvent(RWCString& serverName,RWCString&
hostName);

 static axEventDispatcher* getAxEvent(void *evtPtr);

 NVPAIR_LIST* axQueryServer(const char *serverName,const char
*hostName,NVPAIR_LIST& queryList);

 NVPAIR_LIST* axQueryServerConfig(const char *serverName,const char
*hostName);

 //Reflection methods

 void setEventId(long);

 long getEventId();

 void setName(RWCString&);

 void setName(const char *);

 RWCString getName();
88 Developer’s Handbook: Search Server and AgentXpert

Developing a New Agent
 void setAckObject(RWCString&);

 RWCString getAckObject();

 void setAttributeList(NVPAIR_LIST& attrList);

 NVPAIR_LIST& getAttributeList();

 //Error handling methods

 long Error();

 void Error(long);

 int Good();// returns 1 on good, 0 on Bad

 int Bad();

 void Clear();

private:

 long eventId_; // To maintain the UUID

 RWCString name_; // Name of the event

 RWCString command_; // Name of the command to be invoked

 RWCString token_; // Token to be exchanged,

// Can be used to keep the transaction

// semantics

 RWCString ackObject_; // IIOP object reference, if need to

 // be acknowledged

 NVPAIR_LIST attributeList_; // Name value pair list to be passed

// to the agent

 long err_;

};

#endif /* _AXEVENTDISPATCHER_H_ */

Edit the Event Configuration File

Update the event configuration file to contain the functions and the library
name as described in the psasrvevent configuration file. For more
information about the event configuration file format, see “Creating the
Command Server Configuration File” on page 76 in Chapter 5, “Introducing
AgentXpert.”
Chapter 6, Building an Agent 89

Using Existing Agents
Using Existing Agents
This section contains descriptions of each of the agents included with the
Search Server and AgentXpert product.

This section explains how to use the agents packaged with the AgentXpert
framework. It includes a description of each agent, a description of the
configuration file needed by the command server to invoke the agents, and the
commands needed to get the dispatcher and command server to run the agents.
These agents are part of the libpsagent_psaevents10.so shared library
and are loaded at runtime. For information on the
libpsagent_psaevents10.so shared library, see Getting Started with the
PublishingXpert System.

For a description of the configuration file needed by the command server to
invoke the agents, see “Creating the Command Server Configuration File” on
page 76 in Chapter 5, “Introducing AgentXpert.” For a description of the
command needed to get the dispatcher and command server to run the agents,
see “Starting the Command Server” on page 80 in Chapter 5, and for a
description of the command server initialization file, see “Creating the
Command Server Initialization File” on page 74, also in Chapter 5.

The AgentXpert package comes with the following preconstructed agents:

• Personalized Search

• HTML Formatter

• Advertiser

• Mailer

The code for these agents is located in the $PS_HOME/SDK/agentXpert
directory. A description of each agent follows.

Personalized Search

The GenerateResult agent takes a list of user IDs, searches the database for
a user-defined query, and generates the results into a file. Each file has a name
of the format userid.res where userid is the user ID number. For example,
if the user ID number is 2000, the output filename is 2000.res. The generated
output is written to the directory specified in the cmaserver.conf
configuration file.
90 Developer’s Handbook: Search Server and AgentXpert

Using Existing Agents
The command server checks for the validity of the directory name given to it
before making any attempt to write to it. If the command server is given a list of
directories, it writes to the first one in the list with write access enabled. The
code for the GenerateResult agent is in the header file psagenres.h and
the file psagenres.cpp.

HTML Formatter

The FormatResult agent takes a list of user IDs for which the result files
(userid.res) have been generated and formats them. Like the
GenerateResult agent, the FormatResult agent looks for the generated
result files in the given list of directories. The formatted output files have the
filename extension userid.final where userid is the user ID number. For
example, if the user ID number is 2000, the output filename is 2000.final.
The code for the FormatResult agent is in the file psafrmres.cpp.

Advertiser

The Advertiser agent is a demonstration of what you can do with the
formatted results of a query. This agent takes the list of user IDs and inserts
quasi-randomly selected advertisement images into the formatted files. The
code for the Advertiser agent is in the file advtsr.cpp.

Mailer

The Mailer agent takes a list of user IDs, looks for the files with a .final
extension, and mails the files to the user whose e-mail address is in the first line
of the file. The Mailer agent changes the name of the file to userid.don
where userid is the user ID number. For example, if the given user ID is 2000,
the Mailer agent looks for 2000.final, mails the file to the user, and
changes the filename to 2000.don. The code for the Mailer agent is in the
file mailer_event.cpp.
Chapter 6, Building an Agent 91

Using Existing Agents
92 Developer’s Handbook: Search Server and AgentXpert

3
Appendixes

• Search Server Example

• PublishingXpert SDK Makefile
Part 3, Appendixes 93

94 Developer’s Handbook: Search Server and AgentXpert

Appendix

A
Search Server Example
his chapter contains the file searchsdk_ex.cpp, an example that uses the
search server software development kit (SDK). For information on the

methods used in this example, see Chapter 3, “The Search Server API.”

Note Make sure you have installed the appropriate compilers on your machine
before building your application. Refer to the Getting Started document for
details on the recommended compilers.

T

Appendix A, Search Server Example 95

#include <iostream.h>

#include <search_c.hh>

#include <searchsdk.h>

int main(int argc, char *const *argv)

{

 int i,j;

 PSACSearch *acsearch;

 PSACSearchArg acsearcharg;

 PSACSearchRes acsearchres;

 PSACCollSet collset;

 // Initiate the CORBA client

 acsearch = new PSACSearch;

 // Get server collection list

 if (acsearch->GetCollection(collset).Bad() == -1) {

 cout << "GetCollection Failed" << endl;

 return(-1);

 }

 // Get collection name and path

 for (i=0; i<collset.count; i++) {

 cout << "GetCollection" << i << " " << collset.collname[i] << " "

 << collset.collpath[i] << endl;

 }

 // Set the maximum number of records and turn off highlighting

 acsearcharg.MaxRecords(100);

 acsearcharg.HLon(0);

 // Set the Query type

 cout << "ENTER QUERY PARSER (F)REETEXT, (B)OOLEAN" << endl;

 char parserType[512];

 cin.getline(parserType, sizeof(parserType));

 switch (*parserType) {

 case 'f':

 case 'F' : acsearcharg.QueryType(QP_FREETEXT);

 case 'b':

 case 'B' : acsearcharg.QueryType(QP_BOOLEAN);

 default: acsearcharg.QueryType(QP_BOOLEAN);

 };
96 Developer’s Handbook: Search Server and AgentXpert

 // Add collection to searcharg

 for (i=0; i<collset.count; i++) {

 if ((acsearcharg.AddCollection(collset.collname[i],
 collset.collpath[i])).Bad() == -1) {

 cout << "AddCollection Failed: collname "
 << collset.collname[i] << endl;

 }

 }

 // Set the query string

 char query[8192];

 cout << "BEGIN SEARCH, enter your query:" << endl;

 cin.getline(query, sizeof(query));

 acsearcharg.Query(query);

 // Do the search

 if ((acsearch->Search(acsearcharg, acsearchres)).Bad() == -1) {

 cout << "Search failed." << endl;

 return(-1);

 }

 // Print out the number of documents found.

 for (j=0; j< acsearchres.DocsReturned(); j++) {

 cout << acsearchres.DocPath(j) << endl;

 }

 return(1);

}

Appendix A, Search Server Example 97

98 Developer’s Handbook: Search Server and AgentXpert

Appendix

B
PublishingXpert SDK Makefile
his appendix explains how to configure the PublishingXpert Makefile for
your system and compile the files for your component of the

PublishingXpert system.
T

Appendix B, PublishingXpert SDK Makefile 99

Overview
Overview
This appendix presents the makefile Makefile.basic that contains all the
required flags to build all components of the PublishingXpert Software
Development Kit (SDK). The file is located in the directory $PS_HOME/sdk.

Each of the following components of the PublishingXpert SDK contains a
Makefile that includes $PS_HOME/sdk/Makefile.basic:

• AgentXpert

• Search Server

• Membership:

• Member

• Assets

• Access Control Services

• Billing

Configuring the Makefile
Each component of the PublishingXpert system contains a Makefile and
example files which briefly explain how to use the SDK classes. Each
product-specific Makefile reads the file Makefile.basic for global flags.

You must execute the following steps before using the Makefile.basic file:

1. Make sure PS_HOME is set to your PublishingXpert installation directory.

2. Set the following flags in Makefile.basic to point to the correct directory
paths:

• LDAP_LIBS_PATH to the $suitespot/lib directory where suitespot is
the directory where the Netscape Enterprise Server is installed

• USER_LIB to the directory that contains libresolv.so (usually
/usr/lib)
100 Developer’s Handbook: Search Server and AgentXpert

Configuring the Makefile
3. Edit the Makefile.basic file to set the following flags to point to the proper
locations:

• CPP to the correct C++ compiler, for example:

CPP = /usr/local/tools/sparcworks/SUNWspro/bin/CC

• CPUTYPE, to the type of CPU, for example:

CPUTYPE = sparc

• OSTYPE, to the operating system, for example:

OSTYPE = solaris

• OSVERTYPE, to the version of the operating system, for example:

OSVERTYPE = solaris2_5

4. Change to the subdirectory containing the PublishingXpert component you
wish to compile:

To build the files in your component of the PublishingXpert SDK, enter:

make -f Makefile

For... Enter...

AgentXpert cd $PS_HOME/sdk/agentxpert

Search Server cd $PS_HOME/sdk/search/src

Membership cd $PS_HOME/sdk/membership/member

Assets cd $PS_HOME/sdk/membership/assets

Access Control Services cd $PS_HOME/sdk/membership/aclsvc

Billing cd $PS_HOME/sdk/billing
Appendix B, PublishingXpert SDK Makefile 101

Listing of Makefile.basic
Listing of Makefile.basic
#Generic definitions

CPUTYPE = sparc
OSTYPE = solaris
OSVERTYPE = solaris2_5
CP = /usr/local/tools/sparcworks/SUNWspro/bin/CC
LDAP_LIBS_PATH = /disk01/suitespot/lib
USER_LIB = /usr/lib

CPPFLAGS = -mt -DRW_MULTI_THREAD -DCPU=CPU_$(CPUTYPE) -DOS=OS_$(OSTYPE) -D_RCSID
-DOSVER=OSVER_$(OSVERTYPE) -g -DDEBUG=1 -DDB_ORACLE_SEQ=0 -DSECURITY=acsec_domestic
-DEXPORT_PRODUCT=0 -DBUILD_DLL=1 -pic

CPPSUFFIX = cpp

PS_HOME should be setup as a environment already
SDK_HOME = $(PS_HOME)/sdk

PS_LIBS_PATH = -L$(PS_HOME)/lib
NS_LIBS_PATH = $(PS_HOME)/lib
GCC_LIBS_PATH = $(PS_HOME)/lib

PS_INCLUDE = -I$(SDK_HOME)/common/private -I$(SDK_HOME)/common/public
ROGUEWAVE_INCLUDE = -I$(SDK_HOME)/common/private/roguewave/s-220
VB_INCLUDE = -I$(SDK_HOME)/common/private/Orbeline2.0/s-156/include \
 -I$(SDK_HOME)/common/private/eventservice/include

PS_LIBS = $(PS_LIBS_PATH) -lpsagent_axsdk10 -lpsagent_client10 -lpsagent_server10
-lmember_client10 -lmemcommon_client10 -lassets_client10 -laecore_client10
-lacsrch_client10 -lpsagent_dbaccess10 -lsysmgmt_server10 -lsysmgmt_util10
-lmemcommon_dbaccess10 -lsearch_client10 -laecore_server10 -laecore_client10
-lcorba_client10 -laecore10 -laccore10 -lpsagent_client10 -lcrypto10

BILL_LIBS = $(PS_LIBS_PATH) -lbilling_client10 -lcorba_client10 -lacsrch_client10
-laecore_client10 -lmember_client10 -lmemcommon_client10 -laecore10 -laccore10 -lcrypto10

PS_MEM_LIBS = $(PS_LIBS_PATH) -lsdk_membership10 -lsdk_assets10 -lpscmd_cutils10
-laclsvc_client10 -lcorba_client10 -lmember_client10 -lassets_client10 -laclsvc_client10
-lbilling_client10 -lmemcommon_client10 -lacsrch_client10 -laecore_client10
-lmemcommon_dbaccess10 -laecore10 -lcrypto10 -laccore10

ORACLE_LIBS =

RW_LIBS = -L$(PS_HOME)/lib -ldbt7d -ltls7d -lmny7d -ldl

SYS_LIBS = -lnsl -lsocket

VB_LIBS = -L$(PS_HOME)/lib/ -lorb_r -lposix4 -levent
102 Developer’s Handbook: Search Server and AgentXpert

Listing of Makefile.basic
EXT_LIBS = \
-L$(NS_LIBS_PATH) -lsec-us -lxp $(NS_LIBS_PATH)/libdbm.a \
$(NS_LIBS_PATH)/libnspr.a $(NS_LIBS_PATH)/libares.a $(NS_LIBS_PATH)/libsslio.a \
-lposix4 -L$(GCC_LIBS_PATH) -lgcc -ldl $(USER_LIB)/libresolv.so \
-L$(LDAP_LIBS_PATH) -ladmin -lframe -laccess -lbase -lsi18n -lldapu \
$(LDAP_LIBS_PATH)/libldap10.so $(PS_LIBS_PATH)/libssldap10.a \
$(LDAP_LIBS_PATH)/liblcache10.so

BILL_EXT_LIBS = $(EXT_LIBS)

DO NOT EDIT BELOW THIS PART

COMMON_EXTENSION = $(SDK_HOME)/common/public
psagent_server = $(COMMON_EXTENSION)/pubsys/psagent/idlpsagent/server/public
aecore_server = $(COMMON_EXTENSION)/acaecore/idlacaecore/server/public
psir_common = $(COMMON_EXTENSION)/pubsys/psir/common/public
search_client = $(COMMON_EXTENSION)/pubsys/psir/search/idlsearch/client/public
member_client = $(COMMON_EXTENSION)/membership/member/idlmember/client/public
assets_client = $(COMMON_EXTENSION)/membership/assets/idlassets/client/public
aclsvc_client = $(COMMON_EXTENSION)/membership/aclsvc/idlaclsvc/client/public
memcommon_client = $(COMMON_EXTENSION)/membership/common/idlcommon/client/public
aecore_client = $(COMMON_EXTENSION)/acaecore/idlacaecore/client/public
acsrch_client = $(COMMON_EXTENSION)/accommon/acsrch/idlsrch/client/public
corba_client = $(COMMON_EXTENSION)/accommon/corba/client/public
psagent_dbaccess = $(COMMON_EXTENSION)/pubsys/psagent/dbaccess/public
memcommon_dbaccess = $(COMMON_EXTENSION)/membership/common/dbaccess/public
pubsys_errmsg = $(COMMON_EXTENSION)/pubsys/common/errmsg/public
search_common = $(COMMON_EXTENSION)/pubsys/psir/search/common/public
aecore = $(COMMON_EXTENSION)/acaecore/dbaccess/public
accore = $(COMMON_EXTENSION)/accore/public
crypto = $(COMMON_EXTENSION)/crypto/public
psagent_client = $(COMMON_EXTENSION)/pubsys/psagent/idlpsagent/client/public
aecore_client = $(COMMON_EXTENSION)/acaecore/idlacaecore/client/public
bill_include = $(COMMON_EXTENSION)/billing/public
licence = $(COMMON_EXTENSION)/pubsys/licence/public
sdk_member = $(SDK_HOME)/membership/member/public
sdk_assets = $(SDK_HOME)/membership/assets/public
sdk_aclsvc = $(SDK_HOME)/membership/aclsvc/public

misc = $(COMMON_EXTENSION)/misc/
Appendix B, PublishingXpert SDK Makefile 103

Listing of Makefile.basic
104 Developer’s Handbook: Search Server and AgentXpert

Index

A
acpsacmdsrv command line utility 80
acpsacmdsrv.ini file 74
acpsadisp command line utility 81
AddCollection() 29
AddTableFields() 30
Advertiser 91
agent

Advertiser 91
agent function 84
building 101
configuring 83
defining 84
developing new 84
event configuration file 89
example 85
FormatResult

see HTML Formatter
GenerateResult

see Personalized Search
HTML Formatter 91
initialization function 84
installing 83
Mailer 91
Personalized Search 90

AgentXpert 8
Advertiser 91
building agents 101
command server 70, 73, 74, 80
dispatcher 70, 72, 81
framework 70
HTML Formatter 91
included agents 90
Mailer 91
overview 70
Personalized Search 90

AltKey() 42
attributes

loader 56, 62

B
Bad()

PSACSearch method 26
PSACSearchRes method 43

blocking mode 70, 72

C
Clear()

PSACSearch method 26
PSACSearchRes method 43

CollectionCount() 30
CollName() 43
command line utilities 9
command server 70, 73

configuration file 76, 89
initialization file 74
starting 80

configuring your environment 10

D
dbgroup.ini file 60

location 19
dblist.ini file 50, 62

location 19
dispatcher 70, 72

blocking mode 70, 72
starting 81
timeout mode 70

DocPath() 44
Index 105

DocScore() 45
DocsFound() 44
DocsReturned() 45
DocsSearched() 45
DocType() 46
document loader

see loader or psloader

documents
deleting 57
listing 58

E
ErrorCode() 46
example

agent 85
Makefile 102
search server 95

F
Field() 47
FieldCount() 31
FieldTableAttr() 31

G
GetCollection() 23
GetLangCollection() 24

H
HLbegin() 32
HLend() 33
HLon() 31
HTML Formatter 91

L
LargestSet() 34
loader 8, 49

attributes 56, 62

changing information in a group of
publications 60

changing publication information 58
command line utility 51
creating a publication 54
creating a publication group 59
deleting a document 57
deleting a group of publications 60
information about a publication 62
listing documents in a publication 58
obtaining information about a publication

group 61
obtaining names of publications 64
obtaining publication group names 62
optimizing the publication index 64
updating a publication 65
utility command arguments 52

M
Mailer 91
Makefile 102

configuring 100
using 101

Makefile.basic 100
MaxAttributeSize() 35
MaxRecords() 35

P
Personalized Search 90
PLS

as default search engine 20
PSACCollSet structure 22
PSACSearch

methods 21
PSACSearch methods

Bad() 26
Clear() 26
GetCollection() 23
GetLangCollection() 24
Restart() 25
Search() 25
106 Developer’s Handbook: Search Server and AgentXpert:

PSACSearch() 23
~PSACSearch() 23
PSACSearchArg methods

AddCollection() 29
AddTableFields() 30
CollectionCount() 30
FieldCount() 31
FieldTableAttr() 31
HLbegin() 32
HLend() 33
HLon() 31
LargestSet() 34
MaxAttributeSize() 35
MaxRecords() 35
Query() 36
QueryType() 37
SearchBase() 38
SortBy() 38
SummaryType() 39

PSACSearchArg() 28
~PSACSearchArg() 29
PSACSearchRes methods

AltKey() 42
Bad() 43
Clear() 43
CollName() 43
DocPath() 44
DocScore() 45
DocsFound() 44
DocsReturned() 45
DocsSearched() 45
DocType() 46
ErrorCode() 46
Field() 47

PSACSearchRes() 42
~PSACSearchRes() 42
psasrvevent.conf file 76
psloader 49

attributes 56, 62
command arguments 52
create command 54
delete command 57
docnames command 58

edit command 58
grpcreate command 59
grpdelete command 60
grpedit command 60
grpinfo command 61
grpnames command 62
info command 62
names command 64
optimize command 64
syntax 51
update command 65

publication
creating 54
deleting 57
editing information in 58
listing documents in 58
obtaining information about 62, 64
obtaining name of 64
optimizing index 64
updating document index 65

publication group
creating 59
deleting 60
editing information in 60
obtaining information about 61
obtaining names 62

Q
Query() 36
QueryType() 37

R
Restart() 25

S
search engine

alternate key 42
default 20
location of dynamic library 19
optimizing publication index 64
PLS 20
Verity 20
Index 107

search server 8, 9
building 101
configuration 19
configuration files 25
example 95
overview 16
trace file 19
trace level 19
using 17

search server API 9, 21
add a publication collection to a search 29
alternate key 42
base value 38
call sequence 18
clear error number buffer 26, 43
commands for search engine 42
error number 26, 43
field table 31
highlighting 31
maximum attribute size 35
maximum number of documents returned 34
maximum number of records that can be

passed back 35
obtain the collection path 43
obtain the document path 44
obtain the document score 45
obtain the document type 46
obtain the number of collection sets 30
obtain the number of documents found 44
obtain the number of documents returned 45
obtain the number of documents searched 45
obtain the number of field attributes 31
obtain the value of a specified field 47
query parser 37
query string 36
restart the search server 25
retrieve a language-specific set of

publications 24
retrieve a list of opened publications 23
search base value 38
search opened data for a specified

parameter 25
set attribute list to be received 30
sorting results 38
summary type 39

Search() 25
SearchBase() 38
searchsdk_ex.cpp 95
software versions 10
SortBy() 38
SummaryType() 39
system.ini file

parameters 19

T
timeout mode 70

V
Verity

as default search engine 20
108 Developer’s Handbook: Search Server and AgentXpert:

	zIntroduction -
	Head1 - Before You Begin
	Head1 - Audience
	Head1 - Organization
	Head1 - Conventions

	zChapterTitle - Introducing Search Server and AgentXpert
	Head1 - Architectural Overview
	Head1 - Search Server and AgentXpert Framework
	Head2 - The Search Server
	Head2 - AgentXpert

	Head1 - Command Line Utilities and API
	Head2 - Command Line Utilities
	Head2 - Search Server API

	Head1 - Configuring Your Environment
	Head3 - File Locations
	Head3 - Software Versions

	zChapterTitle - Introducing the Search Server
	Head1 - Search Server Overview
	Head1 - Using the Search Server
	Head1 - Search Server API Call Sequence
	Head1 - Search Server Configuration

	zChapterTitle - The Search Server API
	Head1 - PSACSearch
	Head2 - Class Definition
	Head2 - Data Types and Constants
	Head2 - Constructors and Destructors
	Head2 - PSASearch Methods

	RFunctionHead - GetCollection()
	RFunctionHead - GetLangCollection()
	RFunctionHead - Search()
	RFunctionHead - Restart()
	RFunctionHead - Bad()
	RFunctionHead - Clear()
	Head1 - PSACSearchArg
	Head2 - Class Definition
	Head2 - Constructors and Destructors
	Head2 - PSASearchArg Methods

	RFunctionHead - AddCollection()
	RFunctionHead - AddTableFields()
	RFunctionHead - CollectionCount()
	RFunctionHead - FieldCount()
	RFunctionHead - FieldTableAttr()
	RFunctionHead - HLon()
	RFunctionHead - HLbegin()
	RFunctionHead - HLend()
	RFunctionHead - LargestSet()
	RFunctionHead - MaxAttributeSize()
	RFunctionHead - MaxRecords()
	RFunctionHead - Query()
	RFunctionHead - QueryType()
	RFunctionHead - SearchBase()
	RFunctionHead - SortBy()
	RFunctionHead - SummaryType()
	Head1 - PSACSearchRes
	Head2 - Class Definition
	Head2 - Constructors and Destructors
	Head3 - PSACSearchRes()
	Head3 - ~PSACSearchRes()

	Head2 - PSASearchRes() Methods

	RFunctionHead - AltKey()
	RFunctionHead - Bad()
	RFunctionHead - Clear()
	RFunctionHead - CollName()
	RFunctionHead - DocPath()
	RFunctionHead - DocsFound()
	RFunctionHead - DocsSearched()
	RFunctionHead - DocsReturned()
	RFunctionHead - DocScore()
	RFunctionHead - DocType()
	RFunctionHead - ErrorCode()
	RFunctionHead - Field()
	zChapterTitle - Document Loader
	Head1 - Overview
	Head2 - Document Loader Command Line Utility
	Head2 - Parameters in Initialization Files

	Head1 - Creating a Publication
	Head1 - Deleting a Document
	Head1 - Listing Documents in a Publication
	Head1 - Editing Publication Information
	Head1 - Working with Groups of Publications
	Head2 - Creating a New Publication Group
	Head2 - Deleting a Group of Publications
	Head2 - Changing Information in a Group of Publications
	Head2 - Obtaining Information About a Publication Group
	Head2 - Obtaining a List of Publication Group Names

	Head1 - Listing Information About a Publication
	Head1 - Obtaining the Names of Publications
	Head1 - Optimizing the Publication Index
	Head1 - Updating a Publication

	zChapterTitle - Introducing AgentXpert
	Head1 - AgentXpert Overview
	Head1 - Components of AgentXpert
	Head2 - Dispatcher
	Head2 - Command Server

	Head1 - Configuring and Invoking an Agent
	Head2 - Creating the Command Server Initialization File
	Head2 - Creating the Command Server Configuration File
	Head2 - Starting the Command Server
	Head2 - Starting the Dispatcher

	zChapterTitle - Building an Agent
	Head1 - Defining an Agent
	Head1 - Developing a New Agent
	Head2 - Initialization Function
	Head2 - Agent Function
	Head2 - Writing Functions
	Head2 - Edit the Event Configuration File

	Head1 - Using Existing Agents
	Head3 - Personalized Search
	Head3 - HTML Formatter
	Head3 - Advertiser
	Head3 - Mailer

	zAppendixTitle - Search Server Example
	zAppendixTitle - PublishingXpert SDK Makefile
	Head1 - Overview
	Head1 - Configuring the Makefile
	Head1 - Listing of Makefile.basic

